Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: de la Monte, Suzanne M.; * | Tong, Ming
Affiliations: Departments of Pathology, Clinical Neuroscience, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
Correspondence: [*] Corresponding author: Dr. Suzanne M. de la Monte, MD, MPH, Pierre Galletti Research Building, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, Rhode Island 02903, USA. Tel.: +1 401 444 7364; Fax: +1 401 444 2939; E-mail: [email protected].
Note: [] Communicated by Paula Moreira
Abstract: Streptozotocin (STZ) is a nitrosamine-related compound that causes Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment, brain insulin resistance, and brain insulin deficiency. Nitrosamines and STZ mediate their adverse effects by causing DNA damage, oxidative stress, lipid peroxidation, pro-inflammatory cytokine activation, and cell death, all of which occur in AD. We tested the hypothesis that exposure to N-nitrosodiethylamine (NDEA), which is widely present in processed/preserved foods, causes AD-type molecular and biochemical abnormalities in central nervous system (CNS) neurons. NDEA treatment of cultured post-mitotic rat CNS neurons (48 h) produced dose-dependent impairments in ATP production and mitochondrial function, and increased levels of 8-hydroxy-2'-deoxyguanosine, 4-hydroxy-2-nonenal, phospho-tau, amyloid-β protein precursor-amyloid-β (AβPP-Aβ), and ubiquitin immunoreactivity. These effects were associated with decreased expression of insulin, insulin-like growth factor (IGF)-I, and IGF-II receptors, and choline acetyltransferase. Nitrosamine exposure causes neurodegeneration with a number of molecular and biochemical features of AD including impairments in energy metabolism, insulin/IGF signaling mechanisms, and acetylcholine homeostasis, together with increased levels of oxidative stress, DNA damage, and AβPP-Aβ immunoreactivity. These results suggest that environmental exposures and food contaminants may play critical roles in the pathogenesis of sporadic AD.
Keywords: Alzheimer's disease, diabetes mellitus, environmental toxin, neurodegeneration, nitrosamine
DOI: 10.3233/JAD-2009-1098
Journal: Journal of Alzheimer's Disease, vol. 17, no. 4, pp. 817-825, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]