Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Samantaray, Sandeep* | Sahoo, Abinash
Affiliations: Department of Civil Engineering, NIT Silchar, Assam, India
Correspondence: [*] Corresponding author: Sandeep Samantaray, Department of Civil Engineering, NIT Silchar, Assam, India. E-mail: [email protected].
Abstract: Here, an endeavor has been made to predict the correspondence between rainfall and runoff and modeling are demonstrated using Feed Forward Back Propagation Neural Network (FFBPNN), Back Propagation Neural Network (BPNN), and Cascade Forward Back Propagation Neural Network (CFBPNN), for predicting runoff. Various indicators like mean square error (MSE), Root Mean Square Error (RMSE), and coefficient of determination (R2) for training and testing phase are used to appraise performance of model. BPNN performs paramount among three networks having model architecture 4-5-1 utilizing Log-sig transfer function, having R2 for training and testing is correspondingly 96.43 and 95.98. Similarly for FFBPNN, with Tan-sig function preeminent model architecture is seen to be 4-5-1 which possess MSE training and testing value 0.000483, 0.001025, RMSE training and testing value 0.02316, 0.03085 and R2 for training and testing as 0.9925, 0.9611, respectively. But for FFBPNN the value of R2 in training and testing is 0.8765 0.8976. Outcomes on the whole recommend that assessment of runoff is suitable to BPNN as contrasted to CFBPNN and FFBPNN. This consequence helps to plan, arrange and manage hydraulic structures of watershed.
Keywords: BPNN, CFBPNN, FFBPNN, arid watershed, runoff
DOI: 10.3233/KES-200046
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 24, no. 3, pp. 243-251, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]