Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Extended papers selected from KES-2006
Article type: Research Article
Authors: Chan, Chee Seng | Liu, Honghai; * | Brown, David
Affiliations: Institute of Industrial Research, University of Portsmouth, Portsmouth PO1 3QL, England, UK
Correspondence: [*] Corresponding author. E-mail: [email protected]
Abstract: This paper presents a novel method to the analysis of human-arm motion, in particular improving the efficiency of conventional motion recognition algorithms. Contrary to the prior art methods, this research develops a framework for human-arm motion recognition where qualitative normalised templates (QNTs) is proposed to replace the conventional approaches. First of all, the conventional robotic model has been employed to build a generic vision model for a human-arm, that is we utilise the robot kinematics to construct a stick model. Secondly, the qualitative robotic model is adopted to learn and construct the QNTs where human-arm motion is termed as, whose execution is consistent and could be easily characterised by a definite space-time trajectory in configuration space. Finally, classification of the human-arm motion is achieved by comparing the QNTs to the parameters learnt with particle filter based motion tracking algorithm. Experimental evaluation has demonstrated the effectiveness of the proposed method in human-arm motion classification, and our future work is focused on extending the proposed method to recognise complex human motion, e.g. walking and running.
Keywords: Motion classification, pattern recognition, kinematics model
DOI: 10.3233/KES-2007-11403
Journal: International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 11, no. 4, pp. 207-217, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]