Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Williams, Jason B. | Zhang, Xiaoqin*
Affiliations: Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA, USA
Correspondence: [*] Corresponding author: Xiaoqin Zhang, Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA, USA. E-mail: [email protected].
Abstract: Complex environments contain more information than either natural or artificial agents can fully process in a timely manner. Studies in neuroscience have demonstrated that natural agents utilize affect (or emotion) to filter out irrelevant inputs. In this work, we propose to integrate an affect filtering mechanism in artificial agents to improve the deliberation time for action selection in environment containing a massive number of selection options. To evaluate this model, we create two agent architectures: the first architecture is based on an active reinforcement learning algorithm and the second architecture utilizes a hybrid design with both active reinforcement learning and the affect-based filtering mechanism. We have compared the deliberation time and the overall utility score of these two agents in the same environment. The results showed that the affect-based filtering mechanism is effective in decreasing the deliberation time without compromising the agent’s utility score. The results from this study strengthen the premise that affect plays an important role in intelligent behavior.
Keywords: Affective-computing, decision-making, agent architecture, machine learning, reinforcement learning
DOI: 10.3233/HIS-180259
Journal: International Journal of Hybrid Intelligent Systems, vol. 15, no. 1, pp. 27-53, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]