Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Méndez, Gerardo M.a; * | Martinez, J. Cruzb | González, David S.a | Rendón-Espinoza, F. Javierb
Affiliations: [a] Centro de Manufactura Avanzada, Corporación Mexicana de Investigación en Materiales SA de CV – COMIMSA, Saltillo, Coah, México | [b] Departamento de Economía y Administración, Instituto Tecnológico de Nuevo León, Cd. Guadalupe, N.L., México
Correspondence: [*] Corresponding author: Gerardo M. Méndez, Centro de Manufactura Avanzada, Corporación Mexicana de Investigación en Materiales SA de CV – COMIMSA, Saltillo, Coah, México. E-mail: [email protected]
Abstract: A novel learning methodology based on a hybrid mechanism for training interval singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems uses recursive orthogonal least-squares to tune the type-1 consequent parameters and the steepest descent method to tune the interval type-2 antecedent parameters. The proposed hybrid-learning algorithm changes the interval type-2 model parameters adaptively to minimize some criteria function as new information becomes available and to match desired input-output data pairs. Its antecedent sets are type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are singleton fuzzy numbers without uncertain standard deviations. As reported in the literature, the performance indices of hybrid models have proved to be better than those of the individual training mechanisms used alone. Experiments were carried out involving the application of hybrid interval type-2 Takagi-Sugeno-Kang fuzzy logic systems for modeling and prediction of the scale-breaker entry temperature in a hot strip mill for three different types of coils. The results demonstrate how the interval type-2 fuzzy system learns from selected input-output data pairs and improves its performance as hybrid training progresses.
Keywords: Type-2 Takagi-Sugeno-Kang fuzzy logic systems, hybrid-learning mechanism, OLS-BP training methods, ANFIS, temperature prediction
DOI: 10.3233/HIS-130188
Journal: International Journal of Hybrid Intelligent Systems, vol. 11, no. 2, pp. 125-135, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]