Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Jun
Affiliations: Shijiazhuang University of Applied Technology, Shijiazhuang 050081, Hebei, China | E-mail: [email protected]
Correspondence: [*] Corresponding author: Shijiazhuang University of Applied Technology, Shijiazhuang 050081, Hebei, China. E-mail: [email protected].
Abstract: From the perspective of practical development, under the premise of stable macroeconomic growth in society, influenced by spatiotemporal factors, regional economies inevitably have differences and changes, which affect various aspects of social production and life. In order to understand the spatiotemporal data evolution characteristics of regional economy, promote common regional development and the implementation of coordinated economic development strategies, this article takes the Beijing Tianjin Hebei (BTH for short here) region as an example. By combining spatial econometric models (SEM for short here), this article collects and processes economic development data from 2013 to 2022 in the BTH region, and introduced a spatial weight matrix to conduct High-performance computing and analysis of its regional economic spatial correlation. Based on this, this article conducted in-depth research on the spatiotemporal data evolution characteristics of the BTH regional economy through the description and quantitative analysis of the influencing factors of the BTH regional economy. The empirical analysis results showed that the global Moran index (Global Moran’s for short here) of the BTH region was positive from 2013 to 2022, and the Z-values were all greater than 1.96, indicating a significant spatial correlation in the BTH regional economy. There is an imbalance in economic development in the BTH region, but with the continuous development of the region, its economic balance has improved.
Keywords: Regional economies, spatial econometrics, evolution of spatiotemporal data, BTH region
DOI: 10.3233/IDT-230169
Journal: Intelligent Decision Technologies, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]