Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bhat, Nayeem Ahmad* | Farooq, Sheikh Umar
Affiliations: Department of Computer Sciences, North Campus, University of Kashmir, J&K, India
Correspondence: [*] Corresponding author: Nayeem Ahmad Bhat, Department of Computer Sciences, North Campus, University of Kashmir, J&K, India. E-mail: [email protected].
Abstract: Prediction approaches used for cross-project defect prediction (CPDP) are usually impractical because of high false alarms, or low detection rate. Instance based data filter techniques that improve the CPDP performance are time-consuming and each time a new test set arrives for prediction the entire filter procedure is repeated. We propose to use local modeling approach for the utilization of ever-increasing cross-project data for CPDP. We cluster the cross-project data, train per cluster prediction models and predict the target test instances using corresponding cluster models. Over 7 NASA Data sets performance comparison using statistical methods between within-project, cross-project, and our local modeling approach were performed. Compared to within-project prediction the cross-project prediction increased the probability of detection (PD) associated with an increase in the probability of false alarm (PF) and decreased overall performance Balance. The application of local modeling decreased the (PF) associated with a decrease in (PD) and an overall performance improvement in terms of Balance. Moreover, compared to one state of the art filter technique – Burak filter, our approach is simple, fast, performance comparable, and opens a new perspective for the utilization of ever-increasing cross-project data for defect prediction. Therefore, when insufficient within-project data is available we recommend training local cluster models than training a single global model on cross-project datasets.
Keywords: Cross-project defect prediction, local modelling, software quality assurance, training data selection
DOI: 10.3233/IDT-210130
Journal: Intelligent Decision Technologies, vol. 15, no. 4, pp. 623-637, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]