Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special issue on Intelligent Biomedical Data Analysis and Processing
Guest editors: Deepak Gupta, Oscar Castillo and Ashish Khanna
Article type: Research Article
Authors: Thawkar, Shankara; * | Singh, Law Kumarb | Khanna, Munishb
Affiliations: [a] Department of Information Technology, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India | [b] Department of Computer Science and Engineering, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India
Correspondence: [*] Corresponding author: Shankar Thawkar, Department of Information Technology, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India. E-mail: [email protected].
Abstract: Feature selection is a crucial stage in the design of a computer-aided classification system for breast cancer diagnosis. The main objective of the proposed research design is to discover the use of multi-objective particle swarm optimization (MOPSO) and Nondominated sorting genetic algorithm-III (NSGA-III) for feature selection in digital mammography. The Pareto-optimal fronts generated by MOPSO and NSGA-III for two conflicting objective functions are used to select optimal features. An artificial neural network (ANN) is used to compute the fitness of objective functions. The importance of features selected by MOPSO and NSGA-III are assessed using artificial neural networks. The experimental results show that MOPSO based optimization is superior to NSGA-III. MOPSO achieves high accuracy with a 55% feature reduction. MOPSO based feature selection and classification deliver an efficiency of 97.54% with 98.22% sensitivity, 96.82% specificity, 0.9508 Cohen’s kappa coefficient, and area under curve AZ= 0.983 ± 0.003.
Keywords: Multi-objective particle swarm optimization, nondominated sorting genetic algorithm-III, artificial neural network, feature selection, mammography, classification
DOI: 10.3233/IDT-200049
Journal: Intelligent Decision Technologies, vol. 15, no. 1, pp. 115-125, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]