Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Papageorgiou, Elpiniki I.
Affiliations: Department of Informatics and Computer Technology, Technological Educational Institute of Lamia, 3rd Old National road Lamia-Athens, 35100 Lamia, Greece. E-mail: [email protected]
Abstract: In this work, the Fuzzy Inference Map approach (also known as Fuzzy Cognitive Map) is investigated to handle with the problem of risk analysis and assessment of pulmonary infections during the patient admission into the hospital. A Fuzzy Inference Mapping is an artificial cognitive structure within which the relations between the elements of a mental landscape can be used to assess the impact of these elements. It has the advantageous features of representing medical knowledge in a symbolic manner, giving system's transparency, interpretability of results and easiness of use by non experts. Fuzzy Cognitive Map (FCM) proved by the literature as an appropriate reasoning tool to explicitly encode the knowledge and experience accumulated on the operation of a complex system. This study presents a first tool for making decisions in medical domain that will help physicians, through the design of the knowledge representation and reasoning using FCM to automate the decision making process in the case of infectious diseases prediction. After drawing the FCM model for pulmonary risk prediction, the Decision Making Trial and Evaluation Laboratory (DEMATEL) method is implemented to analyze the map and outrank the concepts according to their importance for physicians. A number of different scenarios concentrated on the pulmonary infections are examined to demonstrate the application of the proposed methodology and its prediction capabilities. This work proves that FCM can handle efficiently with uncertainty in modeling medical knowledge.
Keywords: Fuzzy cognitive maps, knowledge-based systems, modeling, knowledge representation, medical decision making, prediction
DOI: 10.3233/IDT-2011-0108
Journal: Intelligent Decision Technologies, vol. 5, no. 3, pp. 219-235, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]