Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bui, Hung H.; * | Venkatesh, Svetha | West, Geoff
Affiliations: Department of Computer Science, Curtin University of Technology, Perth, WA 6001, Australia
Correspondence: [*] Corresponding author. E-mail addresses: [email protected] (H.H. Bui), [email protected] (S. Venkatesh), [email protected] (G. West)
Abstract: In applications such as tracking and surveillance in large spatial environments, there is a need for representing dynamic and noisy data and at the same time dealing with them at different levels of detail. In the spatial domain, there has been work dealing with these two issues separately, however, there is no existing common framework for dealing with both of them. In this paper, we propose a new representation framework called the Layered Dynamic Probabilistic Network (LDPN), a special type of Dynamic Probabilistic Network (DPN), capable of handling uncertainty and representing spatial data at various levels of detail. The framework is thus particularly suited to applications in wide-area environments which are characterised by large region size, complex spatial layout and multiple sensors/cameras. For example, a building has three levels: entry/exit to the building, entry/exit between rooms and moving within rooms. To avoid the problem of a relatively large state space associated with a large spatial environment, the LDPN explicitly encodes the hierarchy of connected spatial locations, making it scalable to the size of the environment being modelled. There are three main advantages of the LDPN. First, the reduction in state space makes it suitable for dealing with wide area surveillance involving multiple sensors. Second, it offers a hierarchy of intervals for indexing temporal data. Lastly, the explicit representation of intermediate sub-goals allows for the extension of the framework to easily represent group interactions by allowing coupling between sub-goal layers of different individuals or objects. We describe an adaptation of the likelihood sampling inference scheme for the LDPN, and illustrate its use in a hypothetical surveillance scenario.
Keywords: Dynamic probabilistic networks, Reasoning with different levels of abstraction, Wide-area surveillance
DOI: 10.3233/IDA-1999-3503
Journal: Intelligent Data Analysis, vol. 3, no. 5, pp. 339-361, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]