Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hu, Haipinga | Huo, Weia | Yan, Yingyinga | Zhu, Qiuyub; *
Affiliations: [a] College of Sciences, ShangHai University, Shanghai, China | [b] School of Communication and Information Engineering, ShangHai University, Shanghai, China
Correspondence: [*] Corresponding author: Qiuyu Zhu, School of Communication and Information Engineering, ShangHai University, Shanghai, China. E-mail: [email protected].
Abstract: For the pattern recognition, most classification models are solved iteratively, except for Linear LDA, KLDA and ELM etc. In this paper, a nonlinear classification network model based on predefined evenly-distributed class centroids (PEDCC) is proposed. Its analytical solution can be obtained and has good interpretability. Using the characteristics of maximizing the inter-class distance of PEDCC and derivative weighted minimum mean square error loss function to minimize the intra-class distance, we can not only realize the effective nonlinearity of the network, but also obtain the analytical solution of the network weight. Then, the sample is classified based on GDA. In order to further improve the performance of classification, PCA is used to reduces the dimensionality of the original sample, meanwhile, the CReLU activation function are adopted to enhances the expression ability of the features. The network transforms the samples into the higher dimensional feature space through the weighted minimum mean square error, so as to find a better separation hyperplane. In experiments, the feasibility of the network structure is verified from pure linear 𝑾, 𝑾+Tanh, and PCA+𝑾+Tanh respectively on many small data sets and large data sets, and compared with SVM and ELM in terms of training speed and recognition rate. The results show that, in general, this model has advantages on small data set both in recognition accuracy and training speed, while it has advantages in training speed on large data sets. Finally, by introducing a multi-stage network structure based on the latent feature norm, the classifier network can further significantly improve the classification performance, the recognition rate of small data sets is effectively improved and much higher than that of existing methods, while the recognition rate of large data sets is similar to that of SVM.
Keywords: Pattern recognition, image classification, machine learning, GDA
DOI: 10.3233/IDA-230044
Journal: Intelligent Data Analysis, vol. 28, no. 5, pp. 1229-1244, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]