Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Zhenga | Chen, Hongchanga; * | Zhang, Jianpenga | Pei, Yulongb | Huang, Zishuoc
Affiliations: [a] Information Engineering University, Zhengzhou, Henan, China | [b] Eindhoven University of Technology, Eindhoven, The Netherlands | [c] Shanghai Maritime University, Shanghai, China
Correspondence: [*] Corresponding author: Hongchang Chen, Information Engineering University, Zhengzhou, Henan 450001, China. E-mail: [email protected].
Abstract: Dynamic link prediction is an important component of the dynamic network analysis with many real-world applications. Currently, most advancements focus on analyzing link-defined neighborhoods with graph convolutional networks (GCN), while ignoring the influence of higher-order structural and temporal interacting features on link formation. Therefore, based on recent progress in modeling temporal graphs, we propose a novel temporal motif-based attentional graph convolutional network model (TMAGCN) for dynamic link prediction. As dynamic graphs usually contain periodical patterns, we first propose a temporal motif matrix construction method to capture higher-order structural and temporal features, then introduce a spatial convolution operation following a temporal motif-attention mechanism to encode these features into node embeddings. Furthermore, we design two methods to combine multiple temporal motif-based attentions, a dynamic attention-based method and a reinforcement learning-based method, to allow each individual node to make the most of the relevant motif-based neighborhood to propagate and aggregate information in the graph convolutional layers. Experimental results on various real-world datasets demonstrate that the proposed model is superior to state-of-the-art baselines on the dynamic link prediction task. It also reveals that temporal motif can manifest the essential dynamic mechanism of the network.
Keywords: Dynamic link prediction, graph convolutional network, temporal motif
DOI: 10.3233/IDA-216169
Journal: Intelligent Data Analysis, vol. 27, no. 1, pp. 241-268, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]