Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Purohit, Sumita; * | Chin, Georgea | Holder, Lawrence B.b
Affiliations: [a] Pacific Northwest National Laboratory, Richland, WA, USA | [b] Washington State University, Pullman, WA, USA
Correspondence: [*] Corresponding author: Sumit Purohit, Pacific Northwest National Laboratory, Richland, WA, USA. E-mail: [email protected].
Abstract: Networks are a fundamental and flexible way of representing various complex systems. Many domains such as communication, citation, procurement, biology, social media, and transportation can be modeled as a set of entities and their relationships. Temporal networks are a specialization of general networks where every relationship occurs at a discrete time. The temporal evolution of such networks is as important to understand as the structure of the entities and relationships. We present the Independent Temporal Motif (ITeM) to characterize temporal graphs from different domains. ITeMs can be used to model the structure and the evolution of the graph. In contrast to existing work, ITeMs are edge-disjoint directed motifs that measure the temporal evolution of ordered edges within the motif. For a given temporal graph, we produce a feature vector of ITeM frequencies and the time it takes to form the ITeM instances. We apply this distribution to measure the similarity of temporal graphs. We show that ITeM has higher accuracy than other motif frequency-based approaches. We define various ITeM-based metrics that reveal salient properties of a temporal network. We also present importance sampling as a method to efficiently estimate the ITeM counts. We present a distributed implementation of the ITeM discovery algorithm using Apache Spark and GraphFrame. We evaluate our approach on both synthetic and real temporal networks.
Keywords: Temporal graph, temporal motif, independent motif, graph comparison, embeddings
DOI: 10.3233/IDA-205698
Journal: Intelligent Data Analysis, vol. 26, no. 4, pp. 1071-1096, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]