Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Vo, Thama; b; * | Do, Phucc
Affiliations: [a] Lac Hong University, Dong Nai, Vietnam | [b] Thu Dau Mot University, Binh Duong, Vietnam | [c] University of Information Technology, VNU-HCM, Ho Chi Minh, Vietnam
Correspondence: [*] Corresponding author: Tham Vo, Lac Hong University, Dong Nai, Vietnam. E-mail: [email protected].
Abstract: Recently, rapid growth of social networks and online news resources from Internet have made text stream clustering become an insufficient application in multiple domains (e.g.: text retrieval diversification, social event detection, text summarization, etc.) Different from traditional static text clustering approach, text stream clustering task has specific key challenges related to the rapid change of topics/clusters and high-velocity of coming streaming document batches. Recent well-known model-based text stream clustering models, such as: DTM, DCT, MStream, etc. are considered as word-independent evaluation approach which means largely ignoring the relations between words while sampling clusters/topics. It definitely leads to the decrease of overall model accuracy performance, especially for short-length text documents such as comments, microblogs, etc. in social networks. To tackle these existing problems, in this paper we propose a novel approach of graph-of-words (GOWs) based text stream clustering, called GOW-Stream. The application of common GOWs which are generated from each document batch while sampling clusters/topics can support to overcome the word-independent evaluation challenge. Our proposed GOW-Stream is promising to significantly achieve better text stream clustering performance than recent state-of-the-art baselines. Extensive experiments on multiple benchmark real-world datasets demonstrate the effectiveness of our proposed model in both accuracy and time-consuming performances.
Keywords: Text stream clustering, topic model, graph-of-words
DOI: 10.3233/IDA-205443
Journal: Intelligent Data Analysis, vol. 25, no. 5, pp. 1211-1231, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]