Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Muñoz, Alberto; 1
Affiliations: Department of Statistics and Econometrics, University Carlos III, 28903 Getafe, Madrid, España
Note: [1] E-mail: [email protected], URL: http://jupiter.uc3m.es/htdocs/new/estadistica/cv/alberto_munoz.html.
Abstract: The growing availability of databases on the information highways motivates the development of new processing tools able to deal with a heterogeneous and changing information environment. A highly desirable feature of data processing systems handling this type of information is the ability to automatically extract its own key words. In this paper we address the specific problem of creating semantic term associations from a text database. The proposed method uses a hierarchical model made up of Fuzzy Adaptive Resonance Theory (ART) neural networks. First, the system uses several Fuzzy ART modules to cluster isolated words into semantic classes, starting from the database raw text. Next, this knowledge is used together with coocurrence information to extract semantically meaningful term associations. These associations are asymmetric and one-to-many due to the polisemy phenomenon. The strength of the associations between words can be measured numerically. Besides this, they implicitly define a hierarchy between descriptors. The underlying algorithm is appropriate for employment on large databases. The operation of the system is illustrated on several real databases.
Keywords: Automatic indexing, Knowledge extraction, Information retrieval, Neural fuzzy ART models, Information retrieval
DOI: 10.3233/IDA-1997-1103
Journal: Intelligent Data Analysis, vol. 1, no. 1, pp. 25-48, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]