Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Al Shaqsi, Jamila | Wang, Wenjiab; *
Affiliations: [a] Department of Information Systems, Sultan Qaboos University, Muscat, Oman | [b] School of Computing Sciences, University of East Anglia, Norwich, UK
Correspondence: [*] Corresponding author: Wenjia Wang, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. E-mail: [email protected].
Abstract: In cluster analysis, finding the number of clusters, K, for a given dataset is an important yet very tricky task, simply for the facts that there is no universally accepted correct or wrong answer for most real world problems and it all depends on the context and purpose of a cluster study. Numerous methods have been developed for estimating K, but most are not widely used in practice due to their poor performance. Thus, it is still quite common that human user is required to select a specific value or a range for K for many clustering methods before they are used. Inappropriate predetermination for K can result in poor clustering results. This paper presents a new method for estimating the most probable number of clusters automatically. It firstly calculates the length of constant similarity intervals, L, and then considers the longest ones as the representations of the most probable numbers of the clusters under the set context and the chosen similarity measure. An error function is defined to measure and evaluate the goodness of estimations. The proposed method has been tested on 3 synthetic datasets and 8 real-world benchmark datasets, and compared with some other popular methods including particularly the TwoStep implemented in IBM/SPSS Modeler software package. The experimental results showed that the proposed method is able to find the "desired" predominant number of clusters for all the simulated datasets and most of the benchmark datasets, and the statistical tests indicate that our method is significantly better.
Keywords: Cluster analysis, cluster number, cluster validity, similarity measure
DOI: 10.3233/IDA-130596
Journal: Intelligent Data Analysis, vol. 17, no. 4, pp. 603-626, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]