Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Decherchi, Sergio; * | Gastaldo, Paolo | Sangiacomo, Fabio | Leoncini, Alessio | Zunino, Rodolfo
Affiliations: Department Biophysical and Electronic Engineering (DIBE), University of Genova, Genoa, Italy
Correspondence: [*] Corresponding author: Sergio Decherchi, Department Biophysical and Electronic Engineering (DIBE), University of Genova, Genoa, Italy. E-mail: [email protected].
Abstract: Data-intensive applications use empirical methods to extract consistent information from huge samples. When applied to classification tasks, their aim is to optimize accuracy on unseen data hence a reliable prediction of the generalization error is of paramount importance. Theoretical models, such as Statistical Learning Theory, and empirical estimations, such as cross-validation, can both fit data-mining classification domains very well, provided some crucial assumptions are verified in advance. In particular, the stationary distribution of the observed data is critical, although it is sometimes overlooked in practice. The paper formulates an operative criterion to verify the stationary assumption; the method applies to both theoretical and practical predictions of generalization errors. The analysis addresses the specific case of clustering-based classifiers; the K-Winner Machine (KWM) model is used as a reference for its known theoretical bounds; cross-validation provides an empirical counterpart for practical comparison. The criterion, based on efficient unsupervised clustering-based probability distribution estimation, is tested experimentally on a set of different, data-intensive applications, including: intrusion detection for computer-network security, optical character recognition, text mining and pedestrian detection. Experimental results confirm the effectiveness of the proposed approach to efficiently detect non stationarity.
Keywords: Statistical learning theory, data mining, non-stationary distribution, K-Winner machine, clustering
DOI: 10.3233/IDA-2010-0463
Journal: Intelligent Data Analysis, vol. 15, no. 2, pp. 193-214, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]