Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pichara, Karim; * | Soto, Alvaro
Affiliations: Vicuña Mackenna 4860, Edificio San Agustín, Macul, Santiago, Chile
Correspondence: [*] Corresponding author: Karim Pichara, Vicuña Mackenna 4860, Edificio San Agustín, 4 to piso, Macul, Santiago, 7820436, Chile. E-mail: [email protected].
Abstract: Today, anomaly detection is a highly valuable application in the analysis of current huge datasets. Insurance companies, banks and many manufacturing industries need systems to help humans to detect anomalies in their daily information. In general, anomalies are a very small fraction of the data, therefore their detection is not an easy task. Usually real sources of an anomaly are given by specific values expressed on selective dimensions of datasets, furthermore, many anomalies are not really interesting for humans, due to the fact that interestingness of anomalies is categorized subjectively by the human user. In this paper we propose a new semi-supervised algorithm that actively learns to detect relevant anomalies by interacting with an expert user in order to obtain semantic information about user preferences. Our approach is based on 3 main steps. First, a Bayes network identifies an initial set of candidate anomalies. Afterwards, a subspace clustering technique identifies relevant subsets of dimensions. Finally, a probabilistic active learning scheme, based on properties of Dirichlet distribution, uses the feedback from an expert user to efficiently search for relevant anomalies. Our results, using synthetic and real datasets, indicate that, under noisy data and anomalies presenting regular patterns, our approach correctly identifies relevant anomalies.
Keywords: Anomaly detection, active learning, Dirichlet distribution, Bayessian network, probabilistic model
DOI: 10.3233/IDA-2010-0461
Journal: Intelligent Data Analysis, vol. 15, no. 2, pp. 151-171, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]