Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Paris, Paulo Cesar Donizeti | Pedrino, Emerson Carlos*
Affiliations: Department of Computer Science, Federal University of Sao Carlos, Rodovia Washington Luis, Brazil
Correspondence: [*] Corresponding author: Emerson Carlos Pedrino, Department of Computer Science, Federal University of Sao Carlos, Rodovia Washington Luis, Km 235, 13565-905, Brazil. E-mail: [email protected].
Abstract: This study presents a high-level simulator for Network-on-Chip (NoC), designed for many-core architectures, and integrated with the PlatEMO platform. The motivation for developing this tool arose from the need to evaluate the behavior of application mapping algorithms and the routing, both aspects are essential in the implementation and design of NoC architectures. This analysis underscored the importance of having effective NoC simulators as tools that allow for studying and comparing various network technologies while ensuring a controlled simulation environment. During this investigation and evaluation, some simulators, such as Noxim, NoCTweak, and NoCmap, among others, offered configurable parameters for application traffic, options to synthetically define topology and packet traffic patterns. Additionally, they include mapping options that optimize latency and energy consumption, routing algorithms, technological settings such as the CMOS process, and measurement options for evaluating performance metrics such as throughput and power usage. However, while these simulators meet detailed technical demands, they are mostly restricted to analyzing the low-level elements of the architecture, thus hindering quick and easy under- standing for non-specialists. This insight underscored the challenge in developing a tool that balances detailed analysis with a comprehensive learning perspective, considering the specific restrictions of each simulator analyzed. Experiments demonstrated the proposed simulator efficacy in handling algorithms like GA, PSO, and SA variant, and, surprisingly, revealed limitations of the XY algorithm in Mesh topologies, indicating the need for further investigation to confirm these findings. Future work will expand the simulator functionalities, incorporating a broader range of algorithms and performance metrics, to establish it as an indispensable tool for research and development in NoCs.
Keywords: Many-core, network-on-chip, simulators, application mapping, routing algorithms
DOI: 10.3233/ICA-240743
Journal: Integrated Computer-Aided Engineering, vol. 32, no. 1, pp. 55-71, 2025
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]