Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gabrielli, Leonardo1 | Migliorelli, Lucia1 | Cantarini, Michela | Mancini, Adriano | Squartini, Stefano*
Affiliations: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
Correspondence: [*] Corresponding author: Stefano Squartini, Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona, Italy. E-mail: [email protected].
Note: [1] Leonardo Gabrielli and Lucia Migliorelli equally contributed to the manuscript draft.
Abstract: In the automotive industry, intelligent monitoring systems for advanced human-vehicle interaction aimed at enhancing the safety of drivers and passengers represent a rapidly growing area of research. Safe driving behavior relies on the driver’s awareness of the road context, enabling them to make appropriate decisions and act consistently in anomalous circumstances. A potentially dangerous situation can arise when an emergency vehicle rapidly approaches with sirens blaring. In such cases, it is crucial for the driver to perform the correct maneuvers to prioritize the emergency vehicle. For this purpose, an Advanced Driver Assistance System (ADAS) can provide timely alerts to the driver about an approaching emergency vehicle. In this work, we present a driver-assistance prototype that leverages multimodal information from an integrated audio and video monitoring system. In the initial stage, sound analysis technologies based on computational audio processing are employed to recognize the proximity of an emergency vehicle based on the sound of its siren. When such an event occurs, an in-vehicle monitoring system is activated, analyzing the driver’s facial patterns using deep-learning-based algorithms to assess their awareness. This work illustrates the design of such a prototype, presenting the hardware technologies, the software architecture, and the deep-learning algorithms for audio and video data analysis that make the driver-assistance prototype operational in a commercial car. At this initial experimental stage, the algorithms for analyzing the audio and video data have yielded promising results. The area under the precision-recall curve for siren identification stands at 0.92, while the accuracy in evaluating driver gaze orientation reaches 0.97. In conclusion, engaging in research within this field has the potential to significantly improve road safety by increasing driver awareness and facilitating timely and well-informed reactions to crucial situations. This could substantially reduce risks and ultimately protect lives on the road.
Keywords: Advanced driver-assistance system, emergency siren detection, in-vehicle driver monitoring, audio-visual signal processing, deep learning
DOI: 10.3233/ICA-240733
Journal: Integrated Computer-Aided Engineering, vol. 31, no. 4, pp. 381-399, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]