Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Urdiales, Jesús | Martín, David | Armingol, José María*
Affiliations: Intelligent Systems Lab (LSI) Research Group, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
Correspondence: [*] Corresponding author: José María Armingol, Intelligent Systems Lab (LSI) Research Group, Universidad Carlos III de Madrid, Leganés, Madrid, Spain. E-mail: [email protected].
Abstract: Robust and reliable 3D multi-object tracking (MOT) is essential for autonomous driving in crowded urban road scenes. In those scenarios, accurate data association between tracked objects and incoming new detections is crucial. This paper presents a tracking system based on the Kalman filter that uses a deep learning approach to the association problem. The proposed architecture consists of three neural networks. First, a convolutional LSTM network extracts spatiotemporal features from a sequence of detections of the same track. Then, a Siamese network calculates the degree of similarity between all tracks and the new detections found at each new frame. Finally, a recurrent LSTM network is used to extract 3D and bounding box information. This model follows the tracking-by-detection paradigm and has been trained with track sequences to be able to handle missed observations and to reduce identity switches. A validation test was carried out on the Argoverse dataset to validate the performance of the proposed system. The developed deep learning approach could improve current multi-object tracking systems based on classic algorithms like the Kalman filter.
Keywords: Multi-object tracking, deep learning, Kalman filter, convolutional neural network, data association
DOI: 10.3233/ICA-230702
Journal: Integrated Computer-Aided Engineering, vol. 30, no. 2, pp. 121-134, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]