Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kim, Daehoona | Rho, Seungminb | Jun, Sanghoona | Hwang, Eenjuna; *
Affiliations: [a] School of Electrical Engineering, Korea University, Seoul, Korea | [b] Department of Multimedia, Sungkyul University, Anyang, Gyeonggi, Korea
Correspondence: [*] Corresponding author: Eenjun Hwang, School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea. Tel.: +82 2 3290 3256; E-mail: [email protected].
Abstract: In this paper, we propose a classification and indexing scheme of large-scale image repository for spatio-temporal landmark recognition using the local features, GPS data and user tags of images. For spatio-temporal landmark image classification, we first divide Earth's entire surface into unit grid cells and collect pictures taken in each cell through Flickr. The collected images contain information such as location, titles and other user tags. Usually, the titles or user tags of landmark images include landmark names. Hence, by analyzing such tags, we can identify promising landmark names in the region and create a collection of images for each landmark using Flickr API. Even though each landmark class contains images of the same landmark, their spatio-temporal features could be different depending on shooting time, distance or angle. Therefore, we further divide the images in each landmark class into several subclasses according to their spatio-temporal characteristics using their color and local features. Especially, we detect the interest points of the images in the class, construct their feature descriptors using SURF and perform statistical analysis to select their representative points. Similar representative points are merged for fast comparison. Finally, we construct an index on the representative points using k-d tree. To identify the landmark in a user query image, we extract its SURF features and search for them in the index. Most similar matches are returned, along with descriptive text and GPS information. We implemented a prototype system based on a client-server architecture and performed various experiments to demonstrate that our scheme can achieve reasonable precision and scalability and provide a new browsing experience to the user.
Keywords: Landmark, object recognition, local feature descriptor, user-aware, spatio-temporal
DOI: 10.3233/ICA-140478
Journal: Integrated Computer-Aided Engineering, vol. 22, no. 2, pp. 201-213, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]