Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jafar, Iyad | Ying, Hao; *
Affiliations: Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
Correspondence: [*] Corresponding author. Tel.: +1 313 467 6127; Fax: +1 313 577 1101; E-mail: [email protected].
Abstract: Images captured in dark or bright environments are usually characterized of low contrast. It is important to preprocess these images to make them suitable for other image processing applications. The histogram equalization (HE) algorithm is widely used for this purpose due to its simplicity and effectiveness. However, it can result in a significant change in the mean brightness and produce undesirable visual artifacts. This paper introduces the Constrained Variational Histogram Equalization (CVHE) algorithm which basically extends the variational definition of the HE algorithm by adding a mean brightness constraint to formulate a functional optimization problem, the solution of which defines a new graylevel transformation function for contrast enhancement. Preserving the mean brightness is expected to add more control on histogram stretching, thus reducing the artifacts and change in brightness. We also develop two variants of the CVHE algorithm. The first variant is the Constrained Variational Local Histogram Equalization (CVLHE) algorithm which works in a similar manner to the popular local histogram equalization (LHE) algorithm; however it uses the CVHE transformation function. This variant achieves better performance than the CVHE algorithm but with higher computational requirements. The second variant is the Accelerated CVLHE (ACVLHE) algorithm which uses a modified nonoverlapped block processing approach to reduce the CVLHE computations. The ACVLHE strikes a balance between the speed of the CVHE and the performance of the CVLHE. The choice between the CVHE algorithm and its two local variants is a tradeoff between speed and desired enhancement levels. Visual and quantitative evaluation involving benchmark images show our algorithms to be better than their HE counterparts.
Keywords: Blocking effects, contrast, graylevel transformation, histogram equalization, image enhancement
DOI: 10.3233/ICA-2008-15204
Journal: Integrated Computer-Aided Engineering, vol. 15, no. 2, pp. 131-147, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]