Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Banchs, Rafael E.; * | Klie, Hector | Rodriguez, Adolfo | Thomas, Sunil G. | Wheeler, Mary F.
Affiliations: CSM, ICES, The University of Texas at Austin, Texas, USA. E-mail: [email protected], [email protected], [email protected], [email protected]
Correspondence: [*] Corresponding author: Department of Signal Theory and Communications, Polytechnic University of Catalonia, Barcelona, Spain. E-mail: [email protected].
Abstract: This work presents a novel neural stochastic optimization framework for reservoir parameter estimation that combines two independent sources of spatial and temporal data: oil production data and dynamic sensor data of flow pressures and concentrations. A parameter estimation procedure is realized by minimizing a multi-objective mismatch function between observed and predicted data. In order to be able to efficiently perform large-scale parameter estimations, the parameter space is decomposed in different resolution levels by means of the singular value decomposition (SVD) and a wavelet upscaling process. The estimation is carried out incrementally from low to higher resolution levels by means of a neural stochastic multilevel optimization approach. At a given resolution level, the parameter space is globally explored and sampled by the simultaneous perturbation stochastic approximation (SPSA) algorithm. The sampling yielded by SPSA serves as training points for an artificial neural network that allows for evaluating the sensitivity of different multi-objective function components with respect to the model parameters. The proposed approach may be suitable for different engineering and scientific applications wherever the parameter space results from discretizing a set of partial differential equations on a given spatial domain.
DOI: 10.3233/ICA-2007-14302
Journal: Integrated Computer-Aided Engineering, vol. 14, no. 3, pp. 213-223, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]