Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liverani, A.; * | Amati, G. | Caligiana, G.
Affiliations: DIEM, University of Bologna, Italy
Correspondence: [*] Corresponding author: Prof. Ing. Alfredo Liverani, University of Bologna, DIEM (3° PIANO) – v.le Risorgimento, 2, 40136 Bologna, Italy. Tel.: +39 051 2093452; Fax: +39 051 2093412; E-mail: [email protected].
Abstract: The aim of this work is an efficient methodology development for a real-time control of human assembling sequences of mechanical components. The method involves a CAD environment, an hardware system, referred to as a PAA (Personal Active Assistant), and a set of Mixed Reality features. The whole scheme is targeted to positively influence the connection between CAD and Mixed Reality in order to proficiently reduce the gap between engineers and manual operators. The system is based on a CAD assembly module and on an Mixed Reality wearable equipment. It can be used to improve several activities in the industrial field, such as operator professional training, optimal assembly sequence seeking or on-field teleconferencing (suitable for remote collaboration or for full exploitation of Concurrent Engineering suggestions during design and set up stages). The main characteristic of PAA is a real-time wireless linkage to a remote server or designer workstation, where project geometric database is stored. The Mixed Reality wearable equipment consists of an optical see-through display device and a PAA head-mounted camera. The user can freely operate in the mixed environment, while the camera can record the human driven assembly sequence and check the efficiency and correctness via object recognition: an incrementally sub-assembly detection algorithm has been developed in order to achieve complex dataset monitoring. Conversely, designer or assembly planner can exploit the peculiarities of Mixed Reality-based assembly: a straightforward interaction with the assembly operator can be obtained by sending vocal advices or by displaying superimposed visual information on the real scene. In the paper a new method for CAD models and Mixed Reality environment integration will be presented and discussed in order to improve and simplify personnel training or warehouse part seeking.
Keywords: CAD, mixed reality, assembly, concurrent engineering, mixed reality
DOI: 10.3233/ICA-2006-13205
Journal: Integrated Computer-Aided Engineering, vol. 13, no. 2, pp. 163-172, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]