Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Prasath, V.B. Surya
Affiliations: Computational Imaging and VisAnalysis (CIVA) Lab, Department of Computer Science, University of Missouri-Columbia, MO 65211, USA, E-mail: [email protected]
Abstract: Medical X-ray images are prevalent and are the least expensive diagnostic imaging method available widely. The handling of film processing and digitization introduces noise in X-ray images and suppressing such noise is an important step in medical image analysis. In this work, we use an adaptive total variation regularization method for removing quantum noise from X-ray images. By utilizing an edge indicator measure along with the well-known edge preserving total variation regularization, we obtain noise removal without losing salient features. Experimental results on different X-ray images indicate the promise of our approach. Synthetic examples are given to compare the performance of our scheme with traditional total variation and anisotropic diffusion methods from the literature. Overall, our proposed approach obtains better results in terms of visual appearance as well as with respect to different error metrics and structural similarity.
Keywords: total variation, adaptive, regularization, quantum noise, X-ray images, denoising
Journal: Informatica, vol. 28, no. 3, pp. 505-515, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]