Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gao, Chao; * | Yan, Siqi | Hayward, Ryan | Müller, Martin
Affiliations: Department of Computing Science, University of Alberta, Canada
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: The game of Hex can be played on multiple boardsizes. Transferring neural net knowledge learned on one boardsize to other boardsizes is of interest, since deep neural nets usually require large size of high quality data to train, whereas expert games can be unavailable or difficult to generate. In this paper we investigate neural transfer learning in Hex. We show that when only boardsize independent neurons are used, the resulting neural net obtained from training on one base boardsize can effectively generalize – without fine-tuning – to multiple target boardsizes, larger or smaller. When transferring to larger boardsizes, fine-tuning provides faster learning and better performance. The strength of the transferable network can be amplified with search: with a single neural net model trained on games from a base boardsize, we obtain players stronger than MoHex 2.0 on multiple target boardsizes.
Keywords: Hex game, deep learning, transfer learning, neural network
DOI: 10.3233/ICG-180055
Journal: ICGA Journal, vol. 40, no. 3, pp. 224-233, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]