Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Oberwolfach Workshop on Computability Theory 2018
Guest editors: Vasco Brattka, Rod Downey, Julia F. Knight and Steffen Lempp
Article type: Research Article
Authors: Csima, Barbara F.a; * | Dzhafarov, Damir D.b | Hirschfeldt, Denis R.c | Jockusch, Jr., Carl G.d | Solomon, Reede | Brown Westrick, Lindaf
Affiliations: [a] Department of Pure Mathematics, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada N2L 3G1. [email protected] | [b] Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, CT, 06269, U.S.A.. [email protected] | [c] Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL, 60637, U.S.A.. [email protected] | [d] Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL, 60801, U.S.A.. [email protected] | [e] Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, CT, 06269, U.S.A.. [email protected] | [f] Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, CT, 06269, U.S.A.. [email protected]
Correspondence: [*] Corresponding author. [email protected].
Abstract: Hindman’s Theorem (HT) states that for every coloring of N with finitely many colors, there is an infinite set H⊆N such that all nonempty sums of distinct elements of H have the same color. The investigation of restricted versions of HT from the computability-theoretic and reverse-mathematical perspectives has been a productive line of research recently. In particular, HTk⩽n is the restriction of HT to sums of at most n many elements, with at most k colors allowed, and HTk=n is the restriction of HT to sums of exactly n many elements and k colors. Even HT2⩽2 appears to be a strong principle, and may even imply HT itself over RCA0. In contrast, HT2=2 is known to be strictly weaker than HT over RCA0, since HT2=2 follows immediately from Ramsey’s Theorem for 2-colorings of pairs. In fact, it was open for several years whether HT2=2 is computably true. We show that HT2=2 and similar results with addition replaced by subtraction and other operations are not provable in RCA0, or even WKL0. In fact, we show that there is a computable instance of HT2=2 such that all solutions can compute a function that is diagonally noncomputable relative to ∅′. It follows that there is a computable instance of HT2=2 with no Σ20 solution, which is the best possible result with respect to the arithmetical hierarchy. Furthermore, a careful analysis of the proof of the result above about solutions DNC relative to ∅′ shows that HT2=2 implies RRT22, the Rainbow Ramsey Theorem for colorings of pairs for which there are most two pairs with each color, over RCA0. The most interesting aspect of our construction of computable colorings as above is the use of an effective version of the Lovász Local Lemma due to Rumyantsev and Shen.
Keywords: Reverse mathematics, Hindman’s Theorem, Lovász Local Lemma
DOI: 10.3233/COM-180094
Journal: Computability, vol. 8, no. 3-4, pp. 253-263, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]