Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yost, Joseph Robert | Dinehart, David W. | Gross, Shawn P. | Mignella, Michael | Rapone, Christopher
Affiliations: Villanova University, Villanova, PA, USA | Gannett Fleming, Audubon, PA, USA | AECOM, Philadelphia, PA, USA
Note: [] Corresponding author. Joseph Robert Yost, Villanova University, Villanova, PA, USA. E-mail: [email protected]
Abstract: Concrete bridge decks are designed using traditional methodology (TM) or empirical methodology (EM). TM models the deck as a continuous beam in flexure, and EM recognizes the compressive membrane action that aids in distributing wheel loads. An extension of membrane behavior is complete removal of reinforcement from within the deck; this is referred to as steel free deck (SF). In this research study three full-scale bridge decks are investigated, one reinforced with steel, a second is reinforced with glass fiber reinforced polymer (GFRP), and a third is SF. For each the steel and GFRP reinforced decks, the south and north sides are reinforced as required by the TM and EM, respectively. The SF deck is based on research done in Canada. Each deck is subjected to four load cases, corresponding to an AASHTO truck axle positioned for critical positive and critical negative bending on each the north and south sides. Measured response for crack width, deflection, and concrete strain is used to evaluate behavior at the service limit state.
DOI: 10.3233/BRS-140070
Journal: Bridge Structures, vol. 10, no. 1, pp. 19-32, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]