Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Stem Cells and Breast Cancer
Guest editors: Barbara K. Vonderhaar and Gilbert H. Smith
Article type: Research Article
Authors: Shostak, Stanley; *
Affiliations: Department Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
Correspondence: [*] Corresponding author. Tel./Fax: +1 412 421 0504; E-mail: [email protected]
Abstract: Profoundly different patterns of potency and division are exhibited by mammalian embryonic and adult stem cells. Additional confusion surrounds stem-cell surrogates, cache and reserve cells having some characteristics of stem cells and not others. Mystification may have been introduced historically with the concepts of determinate and regulative development, but, hopefully, the muddle can be resolved by tracing the evolution of stem cells in Metazoa. Blastomeres in marine sponges, cnidarians, lophotrochozoans, small ecdysozoans (e.g., Caenorhabditis elegans), and some deuterostomes (e.g., echinoderms and ascidians) exhibit determinative development. Their larval and adult cells have narrow potencies, sometimes coupled to virtually unlimited proliferation, and function in the growth, maintenance and regulation of body size. The embryos of larger arthropods and deuterostomes with well-provisioned eggs or viviparity, on the other hand, exhibit regulative development, while their larval “set-aside” or adult stem cells function in the growth, maintenance, and regulation of organ size coupled to constrained proliferation and cell turnover. Mammalian embryonic stem cells would seem adapted to rapid proliferation, functioning in part to enclose yolk or to acquire access to maternal resources. The cellular products of embryonic stem cells routinely come under global influences and give rise to the cells of germ layers and organ rudiments. Mammalian adult stem cells resemble the blastomeres of planktonic and benthic organisms with small eggs and may have evolved in mature organisms as an adaptation to the growth and maintenance of tissues via proliferation and the regulation of organ size via cell loss (e.g., terminal differentiation). Cancer stem cells, instrumental in metastasis, would seem to ignore mechanisms normally functioning in the removal of excess cells. Strategies for regenerative therapies in adult mammals, therefore, might be based on stimulating growth of adult stem cells or their surrogates in specific tissues rather than on introducing embryonic stem cells into adults. Likewise, strategies for the containment of cancer might be based on promoting normal pathways of cell loss, the basal mode for handling excess cells.
Keywords: adult stem (AS) cells, amebocytes, cache cells, choanocytes, embryonic stem (ES) cells, epithelia, interstitial cells, precursor cells, transit amplifying (TA) cells
DOI: 10.3233/BD-2008-29102
Journal: Breast Disease, vol. 29, no. 1, pp. 3-13, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]