Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Lifang | Wang, Tao; * | Ge, Hongze
Affiliations: Jiangnan University, Wuxi, China
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Accurate segmentation of skin cancer is crucial for doctors to identify and treat lesions. Researchers are increasingly using auxiliary modules with Transformers to optimize the model’s ability to process global context information and reduce detail loss. Additionally, diseased skin texture differs from normal skin, and pre-processed texture images can reflect the shape and edge information of the diseased area. We propose TMTrans (Texture Mixed Transformers). We have innovatively designed a dual axis attention mechanism (IEDA-Trans) that considers both global context and local information, as well as a multi-scale fusion (MSF) module that associates surface shape information with deep semantics. Additionally, we utilize TE(Texture Enhance) and SK(Skip connection) modules to bridge the semantic gap between encoders and decoders and enhance texture features. Our model was evaluated on multiple skin datasets, including ISIC 2016/2017/2018 and PH2, and outperformed other convolution and Transformer-based models. Furthermore, we conducted a generalization test on the 2018 DSB dataset, which resulted in a nearly 2% improvement in the Dice index, demonstrating the effectiveness of our proposed model.
Keywords: U-Net, texture, transformer, skin lesion, medical image segmentation
DOI: 10.3233/AIC-230089
Journal: AI Communications, vol. 36, no. 4, pp. 325-340, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]