Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Highlights of AI Research in Europe
Article type: Research Article
Authors: Kovács, György; * | Alonso, Pedro | Saini, Rajkumar | Liwicki, Marcus
Affiliations: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Norrbotten, Sweden
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Hate speech is a burning issue of today’s society that cuts across numerous strategic areas, including human rights protection, refugee protection, and the fight against racism and discrimination. The gravity of the subject is further demonstrated by António Guterres, the United Nations Secretary-General, calling it “a menace to democratic values, social stability, and peace”. One central platform for the spread of hate speech is the Internet and social media in particular. Thus, automatic detection of hateful and offensive content on these platforms is a crucial challenge that would strongly contribute to an equal and sustainable society when overcome. One significant difficulty in meeting this challenge is collecting sufficient labeled data. In our work, we examine how various resources can be leveraged to circumvent this difficulty. We carry out extensive experiments to exploit various data sources using different machine learning models, including state-of-the-art transformers. We have found that using our proposed methods, one can attain state-of-the-art performance detecting hate speech on Twitter (outperforming the winner of both the HASOC 2019 and HASOC 2020 competitions). It is observed that in general, adding more data improves the performance or does not decrease it. Even when using good language models and knowledge transfer mechanisms, the best results were attained using data from one or two additional data sets.
Keywords: Hateful and offensive language, deep language processing, transfer learning, vocabulary augmentation, RoBERTa
DOI: 10.3233/AIC-210138
Journal: AI Communications, vol. 35, no. 2, pp. 87-109, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]