Scientific Programming 19 (2011) 253-258
DOI 10.3233/SPR-2011-0330
I0S Press

Book Review

253

Dan Nagle

E-mail: danlnagle @me.com

Modern Fortran Explained, by Michael Metcalf,
John Reid and Malcolm Cohen, 488 pp., Oxford Uni-
versity Press, 2011, ISBN: 978-0-19-960142-4.

In the interests of full disclosure, I should explain
that I know the authors, I work with two of them on
International Standards committees, and I respect and
like them all.

Modern Fortran Explained is the latest in a long line
of books, going back to when what became Fortran 90
was a work in progress in the 1980s. New editions have
been published for every revision of the Fortran stan-
dard since, to the point where the authors have dropped
the year indication from the title. If the year had not
been dropped from the title, this book might be For-
tran 95/2003/2008 Explained. Remnants of this legacy
are found in the overall structure of the book, in that
it discusses Fortran 95 first, then adds a Fortran 2003
layer, and lastly a Fortran 2008 layer. Forward pointers
to changed items, largely lifted restrictions, are found
where needed.

Modern Fortran Explained has 488 pages, and in-
cludes a Preface, 20 Chapters, 7 Appendices and an In-
dex. In the preface, we are told that Fortran is a princi-
pal language for science and engineering calculations
and that the authors intend to fully describe modern
Fortran. Fortran certainly has been around for a while.
Since the Fortran 2003 standard was published, Fortran
celebrated its 50th anniversary. After originating with
IBM in the late ‘50s, what I call Archaic Fortran was
the first standardized programming language with For-
tran 66. Modern Fortran begins, I reckon, with Fortran
90.

While old-timers might be astounded to see what
has become of a language they perhaps last used on
a CDC 6600, what does Fortran offer a younger pro-
grammer? I can think of a number of items: first, a very
high degree of portability, without disciplining oneself
to a subset of the language or low-level tricks with con-
ditional compilation. This requires understanding the
numeric requirements of your programming task and
using the kind mechanism as it was intended. Next,

the availability of first-class arrays, together with the
well-designed array syntax, allows a concise statement
of many numerical and scientific problems. Addition-
ally, Fortran has substantial libraries for evaluation of
mathematical functions, bit manipulation, string ma-
nipulation, and also in support of the array features.
Many libraries beyond the standard-specified ones are
well-trusted due to long years of service, some free
and some commercial. And starting with Fortran 2008,
there is a clear and concise, easily understood and
highly scalable parallelism in the form of the coar-
ray features, which is based on the coarray features
Cray has supported for over a decade now. The par-
allel programming model is intuitive, and the imple-
mentation avoids clutter. One needn’t forego full sup-
port for object-oriented programming to obtain these
advantages, either. With 20 Chapters to cover, we had
best get started.

Chapter One “Whence Fortran™ gives an overview
of the history of the standards process that has pro-
duced modern Fortran. We read an overview of the
structure of the standards committee hierarchy who
write the Fortran standards. An international hierar-
chy of committees is responsible for programming lan-
guages (not that every programming language is spec-
ified by an International Standard!), with a more-or-
less parallel committee hierarchy in each participating
country. The main new features introduced with each
revision of the Fortran standard are described, up to
the production of the latest, Fortran 2008. The descrip-
tion of the making of Fortran 2008 is by far the short-
est, surprisingly. But then, one of the authors has re-
tired from the committees, and the other two were on
opposite sides of the Coarray Wars, so it’s likely best
all around to keep that description brief. (Note the in-
dication of the congenial atmosphere of the Fortran
committees.) In short, Fortran has emerged from its
long history as a fully modern programming language,
easily capable of producing highly portable programs
via the kind mechanism, with full language support
for modern programming techniques (encapsulation,
overloading, inheritance, polymorphism), with versa-

1058-9244/11/$27.50 © 2011 - IOS Press and the authors. All rights reserved

254 Book Review

tile and expressive array features, and with special em-
phasis given to the concise and clear expression of
highly scalable parallelism.

Chapter Two “Language Elements” starts with the
character set, first that of Fortran 95 and later as ex-
panded by Fortran 2003. It moves on to tokens and lan-
guage source form (the modern free form rather than
the archaic card-image fixed form). The next idea is the
concept of type, leading to the form of the literals for
the intrinsic types. Next, we encounter names. So we
can now declare scalar variables of the intrinsic types.
Defining derived types comes next, and how to declare
variables of whatever derived types we have defined.
Having scalar variables, arrays of intrinsic types can-
not be far behind. This leads us to the concept of stor-
age order. Hence, we move to character variables and
the substring notation. With arrays, and derived types
containing arrays, a discussion of objects and subob-
jects is in order. A discussion of pointers concludes this
chapter.

Chapter Three “Expressions and Assignments”
comes next. The basic idea is that expressions are eval-
uated according to the operands and the connecting op-
erators without regard to context, and only then con-
verted as needed for assignment. We start with scalar
numeric expressions, including the exponentiation op-
erator, and the results of mixing operand types. The
usual truncation of integer division is fully described.
Here we find full tables of the promotion of operands
of mixed-mode operations. With assignment, we en-
counter defined and undefined variables. Extending
arithmetic operators, we find the relational operators
giving logical results. These, in turn, lead to logical op-
erators and their expressions. Extending the discussion
to character type, we read of character assignment and
the concatenation operator. Having the literals for in-
trinsic types, we next find the derived type construc-
tors. As soon as variables of derived types have values,
we want to combine them using programmer-defined
operators. From defined operators, defined assignment
is not far away. At this point, we are ready for array
expressions and assignments. How pointers are used
to build data structures and used in expressions is ex-
plained before nullifying a pointer concludes this chap-
ter.

Chapter Four “Control Constructs” allows us to
modify the execution sequences seen in the code
snippets encountered so far. The choice constructs
include the if construct (in Fortran spelled if(...)
then ... end if) and the case construct (in For-

tran spelled select case(...) case(...)... end
select). The iterative construct is the multi-formed
do construct (spelled do ... end do). The flexibility
given by the exit statement is shown. The go to state-
ment must be mentioned, with the usual admonition on
its misuse. This concludes the chapter.

Chapter Five “Program Units and Procedures”
shows us how to combine our control constructs into
complete programs. The first program unit, of course,
is the (main) program, which may be named. A pro-
gram may contain internal procedures. If a program
is to cease execution at more than one place, a stop
statement is useful. External subprograms, external
subroutines and external functions, can also contain in-
ternal procedures. Modules provide a means of shar-
ing names, and their attendant attributes (variable, ar-
ray, type, procedure and so on), among program units.
Modules can also contain module procedures which
may also be shared. Procedures may, of course, have
arguments, and this leads to the concept of the pro-
cedure’s interface. Fortran does not require pass-by-
reference, but rather has a set of rules governing argu-
ment association, and these are well described. To re-
turn from a procedure at more than one place, a re-
turn statement is useful. Among the argument at-
tributes are the intents, which restrict how an argument
may be used within the procedure. The restrictions on
what side effects are allowed to function references ap-
pearing in expressions are described. An interface may
be explicit or implicit. Procedures may be passed as
arguments, a classic example being the function to be
minimized being passed to the procedure to do the min-
imization. Arguments to procedures may use keywords
or be optional. With the simple scope of labels, we en-
counter scope, which leads to a full discussion of scope
in general. Next comes recursion, both direct and indi-
rect. With procedure interfaces, we can define generic
sets of procedures. Assumed length characters follow.
Finally, descriptions of the function and subrou-
tine statements completing the chapter.

Chapter Six “Array Features” describes one of For-
tran’s most useful features, its array handling capabil-
ity. One key here is to treat zero-sized arrays as a use-
ful end-case for array handling generally. Next, we see
how to declare an array argument so as to automati-
cally pass its shape. This leads to automatic objects.
Another possibility for arrays of variable size is the
allocatable array, which is described next. How allo-
catable arrays are treated as arguments follows, along
with allocatable function results. Of course, a derived
type may have an allocatable component. This leads to

Book Review 255

a discussion of allocatable objects versus pointer ob-
jects. After discussing elemental operations and array-
valued functions, we come to masked assignment with
the where statement and block and the forall state-
ment and block. This, in turn, leads to the ideas of pure
procedures and elemental procedures. This is followed
by a detailed discussion of array elements and the dis-
tinctions between array components and arrays of de-
rived types. Alternative data structures may be con-
structed using pointer components. The Fortran seman-
tics of pointers, as aliases of targets, is examined before
moving to array constructors. The use of mask arrays
completes this chapter.

Chapter Seven “Specification Statements” covers in
full detail the specification of entities in Fortran. Im-
plicit typing is mentioned and fully described, only
to be disavowed via the standard implicit none
statement. First, one may declare constants and use
constant expressions. These may give initial values to
variables. Initial values for pointers, and default ini-
tialization of derived type components is next. We
encounter the public and private attributes for mod-
ule data. The pointer, target and allocatable attribute
are followed by the intent and optional attributes for
dummy arguments. We next encounter the save at-
tribute (and its relationship to initial values) before
turning to the description of the use statement with its
only and renaming clauses. The effects of these on hi-
erarchies of modules is discussed before turning our at-
tention to an expanded discussion of derived type defi-
nitions. The standard nameli st statement completes
this chapter (namelist input/output is covered in the in-
put/output chapter further on).

Chapter Eight “Intrinsic Procedures” show us the set
of intrinsic procedures available in Fortran 95 (to be
expanded in later revisions of the standard). First, we
meet the use of keywords in calling procedures. The
intrinsic statement is explained, it is useful when ex-
tending the use of an intrinsic to new cases, typically,
to handle a derived type. Next, we examine Fortran’s
extensive library of mathematical and string processing
procedures. Before moving to the numeric inquiry pro-
cedures, we pause to examine the numeric model, upon
which the results are defined. Likewise, the bit ma-
nipulation procedures are prefaced by a discussion of
the bit model. Having seen the elemental procedures,
we move to the transformational procedures which are
very useful when reducing or producing arrays. The
effects of the dim argument are fully covered. Pointer
procedures, clock procedures, and random numbers
complete the chapter.

Chapter Nine “Data Transfer” starts by mentioning
numeric conversion, input/output lists and formatting.
This introduction is followed by descriptions of unit
numbers and internal files. Formatted input and output,
list directed input/output, and namelist input/output
follow in order. More advanced topics include non-
advancing input/output before encountering the indi-
vidual edit descriptors. Unformatted input/output and
direct access files follow. The standard sequence of ac-
tion of a transfer statement completes this chapter.

Chapter Ten “Operations on External Files” begins
by stating what cannot be standardized: the allowed
names for files, and whether sequential access and di-
rect access may be used with the same external file.
The rewind, backspace and endfile statements
follow. The open (including the changeable modes),
close and inquire statements complete this short
chapter.

Chapter Eleven *‘Floating-Point Exception Handling’
begins with a description of how this feature came to be
in Fortran, the development having missed the deadline
for inclusion in Fortran 95, it was issued as a Technical
Report and included in Fortran 2003. Floating-point
exception handling in Fortran is based on the IEEE
754 standard, so we start with a short review. Access
to the features of 754 is via intrinsic modules, which
are a (then) new feature to Fortran. The discussion fol-
lows the exception-enabling flags, halting modes and
rounding modes. Opaque derived types manipulated by
procedures accessed from the intrinsic modules is the
general scheme. If a processor does not support 754,
it simply fails to provide the intrinsic module, and the
compilation of a program requiring 754 fails when the
module is not found. If a processor supports only por-
tions of 754, inquiry procedures exist and the resulting
values may be tested.

Chapter Twelve “Interoperability with C” describes
the standard means of Fortran and C cooperation
within a single program. The intention is to allow
standard-defined access by Fortran programs to the
many libraries defined for use by C language programs,
mainly operating system services and the like, and to
allow the contrary so C programs may use the many
libraries written in Fortran, mainly numeric libraries.
The key idea is to define a mapping between a C proto-
type and a Fortran interface. Again, an intrinsic module
is the mechanism. The intrinsic module defines kind
values for the various C types for a Fortran program to
use. Access to C pointers is via a set of intrinsic mod-
ule procedures. Derived types and variables interoper-
ate via a bind attribute. The C entity must have external

256 Book Review

visibility. A value attribute is added to Fortran to en-
able use of C pass-by-value formal parameters. A lim-
ited enumeration facility is added to Fortran for use
with the corresponding C feature. Examples are pro-
vided. This feature was mostly written by the Fortran
committees, but interested outside parties, including
the C standards committees, and the Fortran binding
group of the MPI Forum, have contributed. (A Further
Interoperability with C Technical Specification is in the
works as this is written. It should be published shortly.)
The liaison among the committees in support of these
features is excellent.

Chapter Thirteen “Type Parameters and Procedure
Pointers” discusses two rather unrelated topics. For-
tran’s type system relies upon kind type parameters to
distinguish among different kinds of types. For exam-
ple, various sizes of integers are all of type integer,
but with differing kind type parameter values. Start-
ing with Fortran 2003, derived types may be defined in
such a way that the kind type parameter values need
not be specified until the type is used to declare a vari-
able. Thus, one might define a type to model rational
numbers, with integers for the numerator and denom-
inator, and not specify the sizes of the integers until
declaring a variable using the rational type. The dis-
cussion of procedure pointers starts with the abstract
interface, followed by the procedure pointer. Next, we
learn how to use a procedure pointer as a component
in a derived type definition. A discussion of the pass
attribute of dummy arguments completes this chapter.

Chapter Fourteen “Object-Oriented Programming”
discusses Fortran features for implementing object-
oriented programming. We start with type extension
before moving to class declarations of polymorphic
entities. The rules for establishing a polymorphic en-
tity’s dynamic type are explained. Next comes the con-
cept of the unlimited polymorphic entity. To simplify
what might become cumbersome notation, the asso-
ciate construct allows a shorthand to be used for a
lengthy fully-qualified data entity’s name. The se-
lect type construct operates analogously to the
select case construct, but chooses an execution
path based on the dynamic type. Abstract types and de-
ferred bindings are described. Type-bound procedures,
and their relationship to constructors and finalization
are discussed. The type inquiry functions complete this
chapter.

Chapter Fifteen “Establishing and Moving Data”,
and the two chapters that follow, discuss some of the
many minor enhancements and programming conve-
niences defined in Fortran 2003. These include en-

hancements to structure constructors, to the allocate
statement (involving deferred types and polymorphic
variables), allocatable entities, the move_alloc in-
trinsic, better control of access from modules includ-
ing enhancements to the renaming abilities of the only
clause on the use statement, and the allowance of nu-
meric intrinsics to give variables their initial values.
Chapter Sixteen “Miscellaneous Enhancements” con-
tinues this line with pointer intents for pointer dummy
arguments, the volatile attribute, the import statement,
an intrinsic module providing definitions of more as-
pects of the program’s environment, and support for in-
ternationalization including various character sets. Ac-
cess is provided to error messages, and one may de-
fine public entities of private type. Chapter Seventeen
“Input/Output Enhancements” discusses how the pro-
grammer may customize input/output for entities of
derived type (allowing, for example, transfer of linked
lists of an unknown number of elements) and asyn-
chronous input/output transfers including the asyn-
chronous attribute for data to be so transferred. The ap-
pearance of exceptional values of IEEE 754 arithmetic
in formatted input/output transfers is explained, along
with the stream access method. Recursive input/output
transfers and the £ 1ush statement are next. This chap-
ter concludes with discussion of intrinsic module pro-
cedures, further specifiers on input/output statements,
and namelist enhancements.

Chapter Eighteen “Enhanced Module Facilities™ dis-
cusses the improvements to modules made between
Fortran 2003 and Fortran 2008. The feature, informally
called submodules, was not quite ready in time for the
release of the Fortran 2003 revision. But it was held to
be of such importance that it was released as a Tech-
nical Report before Fortran 2008 was completed. In
short, a module may have submodules, which inherit
entities from the module via host association (as a con-
tained procedure would from its containing procedure).
A submodule may, in turn, have further submodules.
A most useful part is that the interface to a procedure
may reside in the module and the implementation of
the procedure may reside in a submodule. Thus, when
the implementation is changed but the interface not, no
recompilation of program units that use the module is
necessary. This avoids needless compilation cascades.
The feature is also helpful in simplifying the task of
organizing data into modules, as the authors clearly
explain. (It also encourages implementors to put one
module procedure into one object file, rather than writ-
ing the whole module into one large object file.)

Chapter Nineteen “Coarrays” is, to me, the main
event in a description of Fortran 2008. Coarrays use

Book Review 257

a Partitioned Global Address Space (PGAS) approach
to provide a succinct notation for Single Program
Multiple Data (SPMD) programming. Coarray For-
tran might be compared to Unified Parallel C (UPC)
or Titanium (an extension of Java). Briefly, a coar-
ray program is executed by replicating the program
some number of times. An entity declared as a coar-
ray can be used to fetch or define its value on the cur-
rent image (each replication of the process is called
an image), of course, or the value on another image.
What remains, largely, is to synchronize the images,
and to ensure that each image’s memory correctly re-
flects the program state. That is the role of the syn-
chronization statements, and of the argument passing
restrictions that are to prevent copy-in/copy-out argu-
ment passing. Statements that imply synchronization
are called image control statements. The current set of
coarray features constitutes a simple, functional, core
implementation. Work is ongoing on the Fortran stan-
dards committees to add amenities, such as a means
to group images (which might be called teams), intrin-
sic functions that apply across images (the collective
functions), and parallel input/output. This work is in
its formative stages, but is currently intended to be re-
leased as a Technical Specification (the new ISO-speak
for what was formally called a Technical Report) prior
to any future revision of the Fortran standard.

Chapter Twenty “Other Fortran 2008 Enhance-
ments” is the concluding chapter. It describes several
small enhancements intended to ease the programmer’s
task. Perhaps among the most important is the abil-
ity to use an exit statement to exit from nearly any
construct (exiting was previously restricted to loops),
and the requirement for support of 64-bit (or larger)
integers. Two new performance enhancements are the
concurrent loop control of the do loop, which allows
an iteration space to be tiled by a single block struc-
ture when the iterations may be executed in any or-
der, and the contiguous attribute, which signals to the
compiler that a pointer or a dummy argument is as-
sociated with a contiguous set of memory locations.
Numerous efficiencies are possible when this asser-
tion is true. A variable of complex type may now have
its real and imaginary parts referenced easily by a
component-like notation. Pointer functions may indi-
cate the storage to receive the value in an assignment
statement, and an elemental procedure may be declared
impure to enable diagnostics, or a count of references,
or similar activity. With larger memories, the kind of
an iteration variable may now be declared on the it-
eration statement, perhaps to ensure a 64-bit integer

is used without changing other portions of the code.
Some formatting enhancements aimed towards easing
the writing of CSV files have been made. This enables
easier communication with workbench programs and
spreadsheet programs that can read CSV files (and per-
haps easily produce quick plots). Most of the rest of
the new items in Fortran 2008 are in the intrinsic li-
brary. These are mainly concentrated in the mathemati-
cal functions (expanded trig for complex, Bessel, error
functions, gamma) and in bit manipulation (unsigned
comparison, leading and training zero counts, popula-
tion counts, and a whole slew of reductions). Analo-
gous with minloc and maxloc (location in an array hav-
ing the minimum or maximum value), a new findloc
(location of a given value) has been specified. The ex-
ecution of external programs is standardized, if not the
command line to be executed. Another new feature is
standardized access to the name of the program transla-
tion phase (that is, the compiler) and the options used.
This is helpful when documenting bug reports, bench-
marks, and verification/certification runs. It is also use-
ful when computing “on the cloud” and the compiler
and its options may not be known beforehand (or even
be the same on each node!), but should be included in
the output.

The book has seven appendices. The include a list
of the intrinsic procedure names. The authors list their
own preferences for deprecated features, and I gen-
erally agree. They next list the standard-defined dep-
recated features list and deleted features list. An ex-
tended example of object oriented programming using
Fortran facilities is shown, to make clear how it all fits
together. Next we find a glossary, useful since the au-
thors use standard-defined terms for clarity throughout.
And finally, an appendix has the solutions to the exer-
cises.

That was quite a trip. Modern Fortran is a language
with many features, and the authors have explained the
whole of it very well. I especially like the rationales
given for why certain restrictions exist. Usually, it’s to
favor efficiency. This has been true ever since the orig-
inal Formula Translator, but the restrictions still leave
applications programmers wanting explanations. Some
restrictions may not make sense unless one develops
compilers for a living. Most applications programmers
do not, so it’s helpful to see the whys and wherefores.
Also, this book is very thorough. Together, these fac-
tors account for its length. But every sentence conveys
a useful fact. This book is not light reading, the reader
will likely not be taking this book to the beach, it will
stay beside the workstation where it can be easily con-
sulted.

258 Book Review

I have used earlier versions of this book as a text-
book for graduate-level programming classes in Com-
putational Science. I will use this one, given the
chance. This book is suitable as a textbook (or supple-
mentary reading) for a scientific programming course,
at either the upper-division undergraduate level or the
first-year graduate level. Most of the chapters have
a least a few problems (solutions to the exercises
are given in an appendix). I would choose another
language for a first course in programming, perhaps
python. Array operations and parallel problem solving
in a floating-point environment are sophisticated topics
that might not do so well in an introductory presenta-
tion. Fortran really is a tool that fully supports large-
scale, high-performance number crunching.

I would prefer a different order of topics, where re-
lated features are treated together rather than spread
over the revisions of the language, with the increment

added by each revision described with other, perhaps
unrelated features of the same revision. But, given the
state of the compilers today, the current order of topics
is not so bad. Perhaps in time for the next edition of
this book, compilers will have more closely matched
the then-current standard (several support coarrays to-
day), so at that time such a reordering will be more
useful. In the mean time, an applications program-
mer knows which revision is in use, more importantly,
which features are in use. Modern Fortran, a fully-
capable yet easily readable, very portable, highly effi-
cient object-oriented language, with first class support
for arrays, and an intuitive, highly scalable parallelism,
needs some explanation to be used to best advantage.
And that is exactly what these authors with this book
have accomplished.

