
85

Guest-editorial

High Performance Java Compilation and
Runtime Issues

Java-based technology has experienced an explosive
growth in the computer sector since its inception in the
early 1990s. Its meteoric rise has been fueled, in part,
by solid language design choices that emphasize porta-
bility across diverse platforms – unfortunately, some-
times to the detriment of performance.

The High Performance Computing (HPC) commu-
nity has recently considered Java as a vehicle for devel-
oping portable numeric codes. The HPC community is
well-versed in strategies for achieving portability and
high-performance; however, in general, achieving both
simultaneously remains elusive or difficult at best goal.
A popular technique for obtaining application portabil-
ity is to isolate common number-crunching routines in
a library and to define an architecture-independent li-
brary interface. Software and hardware techniques for
obtaining high performance are often architecture or
application specific and may be ad hoc. These aspects
of high-performance Java codes are discussed in this
issue.

The first four articles concern the use of an ex-
isting numeric library, LAPACK, by Java programs.
In “The cost of being object oriented: A prelimi-
nary study” by Zoran Budimlíc, Ken Kennedy and
Jeff Piper, a straightforward translation of the For-
tran version of LAPACK into Java is compared to
one that exploits the object-oriented features of Java.
An object-oriented Java implementation of LAPACK
is also assessed in “An evaluation of Java for nu-
merical computing” by Brian Blount and Sid Chat-
terjee. Tools for automatically generating Java inter-

faces to libraries are described and evaluated in “JLA-
PACK – compiling LAPACK Fortran to Java” by
David Doolin, Jack Dongarra and Keith Seymour, and
“Mulit-language programming environments for high
performance Java computing” by Vladimir Getov, Paul
Gray, Sava Mintchev and Vaidy Sunderam. The later
work also applies their tool to other libraries, such as
communication packages.

A Java interface for handling interprocessor com-
munication is presented in “U-Net/SLE: A Java-based
user-customizable virtual network interface” by Matt
Welsh, David Oppenheimer and David Culler. The pa-
per “Transient variable caching in Java’s stack-based
intermediate representation” by Paul Týma describes
a JIT compiler optimization, and the paper “Incorpo-
rating Intel MMX technology into a Java JIT com-
piler” by Aart Bik, Milind Girkar, and Mohammad
Haghighat describes techniques for exploiting special-
purpose hardware. “Java-based coupling for parallel
predictive-adaptive domain decomposition” by Cécile
Germain-Renaud and Vincent Néri reports on detailed
optimizations for a specific application.

Susan Flynn-Hummel
IBM T.J. Watson Research Center
30 Saw Mill River Road, H1E20

Hawthorne, NY 10532
USA

Tel.: +1 914 784 7942
Fax: +1 212 242 7035

E-mail: hummel@watson.ibm.com

Scientific Programming 7 (1999) 85
ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved


