
191

Guest-editorial

Software systems for scalable computers

David R. O’Hallarona and
Boleslaw K. Szymanskib
aSchool of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA
E-mail: droh@cs.cmu.edu
b Department of Computer Science, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, NY 12180,
USA
E-mail: szymansk@cs.rpi.edu

After a long period of intense research conducted
mainly in academia and supported by government
agencies, parallel processing has moved to industry
and is deriving the bulk of its support from the com-
mercial world. Such a move has brought with it a
change of emphasis from record-breakingperformance
to price-performance ratios and sustained speed of ap-
plication program execution. The current parallel ar-
chitectures are fast and economically sound. As a re-
sult, there is a strong trend towards widening the ap-
plication base of parallel processing both in terms of
hardware and software. At the same time, quickly de-
veloping technology fundamentally changes balances
between cost of computing, communication and pro-
gramming, and new balances often lead to new ap-
proaches.

On the hardware side, the prevailing tendency is to
use off-the-shelf commercially available components
(processors and interconnection switches) that benefit
from the rapid pace of technological advancement fu-
eled by Moore’s Law. The other tendency is the con-
vergence of different architectural approaches as the
successful ones spread to new systems. Workstations
interconnected by fast networks approach the perfor-
mance of special-purpose parallel machines. Shared
memory machines with multilevel caches and sophisti-
cated prefetching strategies execute programs with ef-
ficiency similar to distributed memory machines. At
the hardware level, the essential aspect of a quickly
changing landscape is the difference in growth of net-
work bandwidth, processor speed and memory access

times, which are listed in the descending order of their
speed of improvement.

All-optical networks and interconnects are chang-
ing the balance on the networking side. Throughput
now tends to be limited by processor speed and soft-
ware overheads rather than by network bandwidth, as
was the case in the past. On the one hand, the latency
of networks is fundamentally limited by the speed of
light and the distance that the transferred data need to
travel. In addition, processor speed is growing faster
than memory access time, where the technological ad-
vances are used to increase the memory chip capac-
ity rather than its speed. The resulting use of buffer-
ing to mask the speed differences has led to the multi-
memory hierarchy in which registers, primary cache,
secondary cache and main memory are typical layers
with progressively lower speed but larger capacity.

One result of these trends is the growing importance
of data locality for the performance of computer sys-
tems, where the architectural details dictate the struc-
ture of the most efficient object code. However, im-
provements in hardware speed are happening faster
than advances in programming efficiency, causing pro-
grammer time to become more expensive relative to
the cost of hardware. To expect a programmer to find
the optimum run-time structure would be contrary to
this trend. As a result, the programming trends are to-
wards portability and reuse of software, which require
abstraction from the architectural details of the com-
puter. Hence, compilers and run-time systems must be
responsible for tuning the portable software for a par-
ticular architecture, and we find that research on auto-
matic optimization of data locality both at compile and
run time has been growing in importance.

The increasing complexity of interactions between
processor, memory hierarchy and network in paral-
lel systems must be encapsulated in a proper abstract
model capable of providing a universal representa-
tion of parallel algorithms. The widening base of the
users relies on standardization of parallel programming
tools. Parallel programmers face a daunting challenge,
especially with increasingly large and complex appli-

Scientific Programming 7 (1999) 191–193
ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

192 D.R. O’Hallaron and B.K. Szymanski / Software systems for scalable computers

cations. They must identify parallelism in an appli-
cation, extract and translate that parallelism into their
codes, design and implement communication and syn-
chronization that preserve the program semantics and
foster the efficiency of parallel execution. All these
steps must be guided by the currently available ar-
chitectures which are constantly changing, potentially
making some parts of the software design subopti-
mal or inefficient. Not surprisingly, in such an envi-
ronment parallel programming has experienced a long
and difficult maturation process. By protecting the
programmer’s investment in software, standardization
promotes development of libraries, tools and applica-
tion kits that in turn attract more end-users to paral-
lel processing. It appears that parallel programming is
ending a long period of craft design and is entering a
stage of industrial development of parallel software.

One of the main lessons from the last 20 years of
research in parallel computing is the importance of ad-
dressing problems at all levels of a computer system,
including low-level architecture, compilers, run-time
systems, languages, and applications. The papers in-
cluded in this issue address problems at each of these
levels. They were selected from 47 submissions to the
International Workshop on Languages, Compilers and
Run-Time Systems for Scalable Computers (LCR98),
which was held in May 1998 at Carnegie Mellon Uni-
versity. A total of 23 papers were presented at the
workshop, and based on the reviews, we selected 9 of
them for invitation to this special issue. The authors
of the invited papers submitted extended and updated
versions of their presentations that underwent a new
round of reviews. The final versions of the papers, with
changes suggested by the new reviews, are presented
in this issue.

The first two papers address low-level system issues.
The first paper, entitled “Impulse: memory system sup-
port for scientific applications”, by John Carter, Wilson
Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, and
Sally McKee, describes a radical new memory con-
troller for improving the performance of programs with
irregular memory access patterns that are known only
at run-time. Such programs are the core of the large
scientific simulations that motivate much of parallel
computing. The Impulse controller is an exciting new
idea because it could be incorporated easily into ex-
isting system designs. The second paper, entitled “The
statistical properties of host load”, by Peter Dinda, in-
vestigates statistical properties of host load through
traces collected at different machines. These properties
are of utmost importance for building scalable parallel

distributed computations on clusters of workstations.
Dinda’s results are surprising because they identify un-
expected structure in load traces, including the prop-
erty of self-similarity.

Compilers have long been recognized as essential
tools for programming parallel computers. However,
the problem of parallelizing sparse and irregular codes
has proven to be difficult. The paper entitled “On the
automatic parallelization of sparse and irregular For-
tran programs”, by Yuan Lin and David Padua, deals
with the tough problem of parallelizing sparse and
irregular Fortran codes at compile-time. The authors
identify and classify relevant kernel codes, and intro-
duce a promising new approach.

An exciting new research direction in parallel com-
puting is the discovery of ways that compilers and run-
time systems can cooperate to produce more efficient
parallel programs. In “Combining compile-time and
run-time parallelization”, by Sungdo Moon, Byoungro
So, and Mary Hall, the authors describe how efficient
run-time tests, supported by high-quality compile-
time analysis, can identify new opportunities for loop-
level parallelism. The results are integrated into a real
compiler/run-time system and validated on programs
from the SPECFP95 and NAS benchmark suites.

Other researchers are investigating this compile-
time and run-time integration in the context of dis-
tributed workstation clusters. Traditional distributed
computing research focuses on resource availability,
result correctness, code portability and transparency
of access to the resources, rather than the issues of
speed, efficiency, and scalability that are central to
parallel computing. The ever-decreasing cost of hard-
ware encourages configuring computer systems for a
peak demand that is much higher than the average
demand. So generally, computers are underutilized.
Hence, there are large computational resources avail-
able at any moment over the LAN (Local Area Net-
work), WAN (Wide Area Network) and the Internet.
Distributed and parallel systems that are capable of ex-
ploring such resources are of growing interest. How-
ever, challenges to build them for truly universal use
are formidable, among them security of the accessed
machines, fault tolerance, transparency, and the sys-
tem’s ability to adapt to the changing availability of
computers,

The paper entitled “CRAUL: Compiler and run-time
integration for adaptation under load”, by Sotiris Ioan-
nidis, Umit Rencuzogullari, Robert Stets, and Sand-
hya Dwarkadas, shows how the compiler and run-
time system can work together to load-balance appli-

D.R. O’Hallaron and B.K. Szymanski / Software systems for scalable computers 193

cations running on distributed shared memory work-
station clusters. Another paper, entitled “Flexible IDL
compilation for complex communication patterns”, by
Eric Eide, James Simister, Tim Stack, and Jay Lepreau
describes how to build a flexible optimizing compiler
that produces specialized and efficient communication
code for the run-time systems of complex distributed
applications.

The last three papers address issues at the applica-
tion and language levels. The idea of using both data
and task parallelism in a single application is not new.
However, dynamic integration of these two types of
parallelism is very useful for real-time interactive ap-
plications where the response time is at premium. The
paper entitled “Integrated task and data parallel support
for dynamic applications”, by James Rehg, Kathleen
Knobe, Umakishore Ramachandran, Rishiyur Nikhil,
and Arun Chauhan describes a new architecture for
parallelizing real-time applications using such an inte-
gration, and show how this architecture can be applied
to complex and dynamic multimedia applications such
as a smart kiosk. In the paper entitled “Menhir: An

environment for high performance Matlab”, Stéphane
Chauveau and François Bodin describe a compiler sys-
tem for parallelizing programs written in Matlab, a
popular high-level language for specifying numerical
algorithms. Finally, in “Irregular computations in For-
tran – expression and implementation strategies”, Jan
Prins, Siddhartha Chatterjee, and Martin Simons de-
scribe some elegant techniques for representing and
implementing sparse irregular codes in Fortran.

In preparation of this special issue, the reviewing of
the papers was an important stage both for the selec-
tion of the best submissions as well as for improving
the published papers. Many thanks are due to the fol-
lowing volunteers for their timely and thoughtful re-
views: David Bakken, Sigfried Benkner, Christopher
Carothers, Peter Dinda, Ian Foster, Thomas Gross,
Chen Ding, Chuanyi Ji, Guoha Jin, Charles Koelbel,
Erwin Laure, William Maniatty, Pantona Mario, Ed-
uard Mehofer, Piyush Mehrotra, Charles Norton, Joel
Saltz, Jaspal Subhlok, Bernd Wender, Bwolen Yang,
Katherine Yelick, Mohammed Zaki, and Hans Zima.

