
Reviews

Great Ideas in Computer Science: A Gentle Introduction, by Alan W. Biermann. 2nd edition. ISBN
0-262-52223-2, 1997. Available from MIT Press, Cambridge, MA.

This book is the second edition of Professor Biermann’s
1990 text. The text supports a course in computer science
for non-computer science students. This is a tall order for
any teacher; just the choosing of topics is a monumental
task. Perhaps that is the place to start the review.

The choice of topics is taken from “Computing as a
Discipline” by Peter Denning,et al.∗ This article can be
taken as a reasonable taxonomy of what computer science
is all about. The article lists nine subareas of computer
science:

Algorithms and Data Structures
Architecture
Artificial Intelligence and Robotics
Database/Information Retrieval
Human-Computer Interaction
Numerical/Symbolic Computing
Operating Systems
Programming Languages
Software Methodology and Engineering

Given a decision to cover these nine categories, there
remains a question of how to cover each topic, what ex-
amples to use, what pedagogy to use, what programming
to cover,etc. My general impression of the text is that it
admirably covers the nine areas except perhaps human-
computer interaction (HCI).

The text contains fifteen chapters. The first four chap-
ters cover basic computer science programming issues.
A first impression is that there is a lot ofPascal code
in this text, but the author wants to teach elementary pro-
gramming as well as computer science concepts. The lan-
guage of choice isPascal ; the programs supporting the

* Peter J. Denning (Chairman), Douglas E. Comer, David Gries,
Michael C. Mulder, Allen Tucker, A. Joe Turner, and Paul R. Young,
“Computing as a Discipline,”Communications of the ACM, volume 32,
number 1, January, 1989.

 1997 IOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 399–400 (1997)

text are available. The choice ofPascal is understand-
able in 1985 but it is not so clear in 1997.

Certainly,Pascal is easier for the non-programmer
to grasp thanC. The motivating problems in these chap-
ters are well thought out and lead the student naturally to
topics in computer science. These problems come from
Denning categories of algorithms, database systems, nu-
merical algorithms, and software methodology.

Chapters five through fifteen introduce problems from
the remaining topics except HCI. Since it is hard to es-
cape HCI considerations on any PC today, the lack of an
HCI chapter does not necessarily mean that HCI issues
are not addressed. Several chapters (7–10) deal with the
computer as an electronic device and the computer as a
virtual machine (the view of the system as presented by
the operating system). For the most part, the examples
chosen seem natural for the intended audience.

For the remainder of this review, the comments are
restricted to those I think I am sufficiently well-versed
enough to comment and are germane to this journal’s au-
dience: questions relating to computational science and
engineering. These comments are further constrained to
touch on thought patterns or pedagogical technique.

Ch 3. Within the limits of the material, a good attempt is
made to make sense of computer arithmetic. For a
nontechical group, the termerror must be handled
carefully since it is a “loaded” term. The author
misses a good chance to put the term in perspective
by looking atdV/dr = 500− 3πr2 for several
values ofπ , like 22/7, 3.14, 3.14159,etc.

Ch 5. This chapter is the one I disagree most with: the
issue of correctness and validation is never
addressed. The subject of the chapter (simulation)
is covered by giving several simulations. The
author skips entirely the development of the
equations. The reality of the equations is never
questioned. I feel this is a major pedagogical
mistake.

400 REVIEWS

Ch 9. The author does a good job in explaining formal
language notation, which can be difficult to
communicate clearly. He does assume, however,
that the students understand the syntax/semantics
division, what parsing is, what grammars are,etc.
My experience is that they have little
understanding for the structure of natural
language, let alone formal language.

Ch. 12–14. These chapters are treated as independent
and I believe that is a mistake at this level.

There are occasional organization problems. For ex-
ample, grammar rules are used in Chapter 1 but are not
explained well until Chapter 9. In such an encyclopedic
work, one should expect a few such problems.

I do have two general criticisms:

1. The text is lacking in pointers to what might be
calledclassical problems. Computer science, like
any endeavor, has an excitement generated by the
problems and the solutions to those problems. The
NP-complete problems, parallelism,
computability, programming languages,etc.
generate their own excitement: where does the
student go to find out more?

2. The text’s tactic of raising questions, by using
what-style questions, are a good device.

Unfortunately, those questions are not always
answered by the text. But more to the point, many
chances to ask thewhy is it soquestion are passed
up, depriving the reader of stimulation.

I recommend this text for instructors who are dealing
with a high school or college level, non-computer sci-
ence audience. The author has taken on a very difficult
task and I believe that for a non-computer sciencestu-
dentaudience this text is worth serious consideration. For
the non-student — say a professional scientist or engineer
— it is not so clear as to the worth of the text. It certainly
points out various applications of computer science ideas,
but to the computer literate scientists, engineer, or math-
ematician, the presentation may be a too low a level to be
satisfying.

D. E. Stevenson
442 R. C. Edwards Hall

Department of Computer Science
Clemson University

PO Box 341906
Clemson, SC 29634-1906, USA
E-mail: steve@cs.clemson.edu

