
Scientific Programming 15 (2007) 1–2 1
IOS Press

Introduction

Fortran programming language and Scientific
Programming: 50 Years of mutual growth

Boleslaw K. Szymanski
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

This special issue of Scientific Programming is de-
voted to celebration of fifty years of mutual and re-
markable growth of both scientific programming and
its primary language, Fortran. In this brief introduc-
tion, we will remark on the past, the present and the
future of Fortran and summarize the papers included in
this issue.

Although the first specification of the Fortran lan-
guage was released in 1956, IBM delivered its first
compiler for its computer, IBM model 704, in 1957,
hence this year marks the 50th anniversary of introduc-
tion of Fortran to users. The language was designed by
John Backus and his colleagues at IBM with the goal to
reduce the cost of programming scientific applications
by providing an “automatic programming system” to
replace assembly language with a notation closer to
the scientific programming domain. As the computer
technology has been evolving from a single computer,
to parallel computers of different kinds, to multi-core
processors, clusters and grids, the Fortran language has
been evolving as well with the same goal of reducing
the cost of programming without sacrificing efficiency.
Over the years, the common standard emerged first,
followed by a series of revisions. This process con-
tinues as the most recent development of a revision,
scheduled for 2008, is under way. Yet, care has been
taken at each revision to preserve, to the greatest extent
possible, compatibility with previous versions to en-
sure correct recompilation of legacy codes. As a result,
each revision includes only a fraction of the proposed
new facilities, allowing the ideas for changes to ma-
ture before they are accepted. Over half of the centu-

ry of its existence, the evolving Fortran has been the
traditional and major language for scientific program-
ming and it has played a significant role in the research
on programming languages and compilers for scientif-
ic computing. The vibrant user community, the well-
established committee overseeing its evolution and the
process for revisions of the language ensure the signif-
icant role for Fortran in scientific programming in the
immediate future and are likely to continue to secure
Fortran’s relevance for many years to come.

The first article in this issue, entitled “Scientific pro-
gramming in Fortran” has been prepared by W. Van
Snyder. The author provides a historical perspective on
the development of various, progressively more mod-
ern, versions of Fortran, starting with the first standard
developed by ANSI predecessor, ASA, and introduced
in 1966. The article briefly describes the essence of
revisions to these standards introduced in 1977, 1990,
1995 and most recently in 2003. Then, the author
briefly discusses revisions being prepared for the 2008
standard release and remarks: “Of the thousands of
programming languages invented, only a dozen or so
have been sufficiently widely used to have had interna-
tional standards, and only four of those have had revi-
sions that attempted to keep up with language technol-
ogy while preserving software investments by main-
taining compatibility with previous editions: Fortran,
Cobol, Ada and C . . . The temperament of the Fortran
committees and community, at least at present, is that
there will be future developments, which will maintain,
and probably enhance, the suitability of Fortran for sci-
entific programming.” This clearly shows how unusual
the longevity and vitality of Fortran have been.

ISSN 1058-9244/07/$17.00 2007 – IOS Press and the authors. All rights reserved

2 B.K. Szymanski / Introduction

One of the most significant enhancements of Fortran
2008 are co-arrays. John Reid and Robert Numrich,
who pioneered development and use of co-arrays, de-
scribe in an article entitled “Co-arrays in the next For-
tran standard” the main ideas behind them. The article
also enlists many changes that have been made in co-
array definitions compared to the initial report on co-
arrays that was published in 1998. Co-arrays are inter-
preted as if the program containing them was replicat-
ed and all copies were executed asynchronously, each
with a local set of data objects. Each executing copy is
called an image. Simple syntax enables the compiler
(and the programmer) an easy recognition when the da-
ta are accessed in the local image and when an access
requires communication with other images. In view of
rapidly increasing availability and level of existing par-
allelism in multi-core hardware, this feature will enable
Fortran programmers to write clear and concise codes
for such architectures.

In the article entitled “The transition and adoption
to modern programming concepts for scientific com-
puting in Fortran,” written by Charles Norton and his
collaborators, the authors describe their experiences
in their pioneering exploration of object-oriented pro-
gramming in Fortran90 and Fortran95 for large-scale
scientific programs. The paper reviews Fortran90/95
constructs that were used to provide basic features of
object-oriented programming style and explains how
these features have been employed in modernizing sev-
eral significant scientific programming applications.
The important observation made is that scientific pro-
gramming uses object composition rather than inher-
itance, which was difficult to express in Fortran until

2003. The code modernization has been accomplished
by separating object-oriented design in the form of
skeleton code from the low-level implementation, often
existing as a legacy code. This approach facilities rapid
design and redesign of such patterns until the desired
program is achieved. Finally, the authors discuss how
other modern programming techniques, such as Design
Patterns, can and have been used in modern Fortran
software development.

Finally, Hans Zima in an article entitled “From FOR-
TRAN 77 to locality-aware high productivity languages
for peta-scale computing” discusses the impact of the
development of High Performance Fortran (HPF) fam-
ily of languages on the current language developments
for peta-scale computing. An example of such a devel-
opment is the language Chapel that is a modern object-
oriented language developed in the High Productivi-
ty Computing Systems (HPCS) program sponsored by
DARPA. It provides a general framework for the sup-
port of user-defined distributions. This is a continua-
tion of the research and development pioneered by the
author in Vienna Fortran. The central issue addressed
by these developments is providing high-level language
support for locality awareness in scientific program-
ming.

During preparations of this special issue, two giants
of the Fortran community died this year. John Backus,
the Fortran creator, died on March 17, 2007. Ken
Kennedy, the pioneer of Fortran compiler optimization
and parallelization worked on the contribution to this
issue until he died on February 7, 2007. We dedicate
this issue to their memory and contributions to scientific
programming community.

