
Scientific Programming 13 (2005) 57–63 57
IOS Press

Book Reviews

MPI – The Complete Reference, Vol. 1, The MPI
Core, 2nd ed., Scientific and Engineering Computa-
tion Series, by Marc Snir, Steve Otto, Steven Huss-
Lederman, David Walker and Jack Dongarra, MIT
Press, Cambridge, MA, USA, 1998. ISBN: 0 262
69215 5

MPI – The Complete Reference, Vol. 2, The MPI
Extensions, 2nd ed., William Gropp, Steven Huss-
Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir and Marc Snir, Scientific
and EngineeringComputation Series, MIT Press, Cam-
bridge, MA, USA, 1998. ISBN: 0 262 57123 4

MPI – The Complete Reference eponymously stakes
its claim to being a complete reference. Volume 1
discusses “The MPI Core” (meaning MPI-1 but using
MPI-2 names) and has 9 chapters, a bibliography, and
426 pages including the index; Volume 2 discusses
“The MPI Extensions” (meaning features new with
MPI-2) and has 9 chapters, a bibliography, and 344
pages including the index. The index in each volume
includes entries in the other. Both volumes contain a
constants index and a function index. The authors are
members of the MPI Forum, other members of the Fo-
rum are mentioned in the Preface. The authors clearly
state that these books are not a tutorial but rather than
being a first book on using MPI, these books are in-
tended as a resource for the experienced MPI user. And
indeed, every function, including constants associated
with use, is described. The bindings for C, C++, the
original Fortran bindings and the modern Fortran bind-
ings are included.

So why would one read these books? The message
passing beginner has tutorials available. The experi-
enced programmer wanting the definitive MPI speci-
fication may fetch it from the MPI Forum’s web site
(http://www.mpi-forum.org). Have the authors given
the reader more than the definitive specification? If suc-
cessful, the intended audience would be the program-
mer who will make a significant investment in software
using MPI and who wants to make good use of the full
extent of MPI in doing so. The Preface emphasizes that

the book is not “a gentle introduction” nor a tutorial.
And, yes, every nook and cranny of MPI is explored
systematically. In fact, I found these books so complete
that I found it difficult to review these books without,
somehow, reviewing MPI as well. That indicates to me
how well the authors succeeded.

So let’s begin with the Preface of Volume 1, and see
what’s here. The starting point is a chronology of the
MPI Forum, with a discussion of what was, and was
not, included in MPI-1. A subset of Volume 1 suitable
for a first read is described. Differences between the
first edition and the second edition, and what’s in MPI-2
(here that means, in Volume 2), are then sketched. The
acknowledgments include some of the funding sources
of the MPI Forum, and earlier efforts towards standard-
izing parallelism are acknowledged.

The Introduction discusses the conventions used
throughout both volumes, as well as conventions
adopted by MPI itself for naming procedures and
constants. There is enough discussion of language
(C/C++ and Fortran) binding issues to make the fol-
lowing chapters clear, but a much more extensive
discussion of language-specific issues is presented in
Chapter 8 near the end of Volume 2. Since message
passing is, conceptually at least, a processes-to-process
scheme, the basics involving processes, error handling
and the interaction of MPI with other communication
schemes (signals, Posix and other interprocess commu-
nications) are explained.

Chapter 2 discusses the basics of MPI communica-
tions. The basic transaction is the point-to-point (that
is, process-to-process, node-to-node) copy of a con-
tiguous block, called a buffer, of data. Not surpris-
ingly, a number of basic issues arise immediately. The
authors pay suitable attention to these basics: How
much data is transferred (how large is the buffer)? Is
the transfer between similar processor architectures or
different processor architectures (representation format
and endian)? Will the transferring processes wait (a
blocking transfer) or not (a nonblocking transfer) dur-
ing the transfer? And it is here that one is directly
confronted by the very low level nature of the mes-
sage passing paradigm: where any assembly language

ISSN 1058-9244/04/$17.00 © 2005 – IOS Press and the authors. All rights reserved

58 Book Reviews

has a simple copy instruction (for example, “mov”) to
transfer data, message passing generally requires two
calls, one marking the transmission and one marking
the reception, to transfer data (but we’ll see “one-sided
transfers” in Volume 2).

It is here in Chapter 2 that the discussion turns briefly
to what MPI means by type and how type matching
is done between the sender and receiver. The issues
of blocking versus nonblocking, and how to query the
status and then cancel a nonblocking transfer are ex-
amined. One then moves to esoterica such as multiple
completions, null requests and persistent requests.

Chapter 3 fully describes the MPI mechanisms for
constructing multi-strided arrays, which MPI calls a
datatype. These constructs allow “holes” between el-
ements, and so they go beyond the contiguous blocks
discussed in Chapter 2. The Fortran programmer can
skim this quickly while the C and C++ programmer
must learn how, at a very low level, to construct what a
Fortran programmer can do with a few keystrokes of ar-
ray reference. Nevertheless, the examples include For-
tran cases to show the effects of array indexes starting at
one rather than zero (of course, Fortran allows arbitrary
lower bounds of array indexes including zero). The full
create, commit, and use sequence is shown. The for-
mulas describing the precise data locations are given,
so one may check the exact locations referenced. It is
complex to be sure but that is the nature of low-level
detail. The rules for type matching are described. The
various utility functions associated with datatypes are
shown, as are conversion between C and Fortran array
conventions (row-wise versus column-wise). MPI’s
pack and unpack functions are described (again, For-
tran has its own intrinsic pack and unpack).

Chapter 4 covers the collective communication ca-
pabilities of MPI. These include broadcasts and reduc-
tions. While these operations could be explicitly done
by the user’s program, the higher-level functions are
a welcome convenience. The rationale for the stricter
matching rules of collective communications calls is
explained and there is a brief introduction to the basic
idea of the MPI communicator. The collective commu-
nications proper,beginning with barriers,are discussed.
The distinctions among broadcast, scatter, gather, all-
toall and allgather are made clear. Then the variants
of the routines, for various data layouts, are discussed.
The reduce operations are discussed, with the same
thoroughness. Finally, a detailed discussion of the se-
mantics of collective communications is presented.

Chapter 5 discusses MPI communicators, which the
reader has been accepting without too much explana-

tion until this point. Simply, communicators are named
sub-groups of processors. The programmer may cre-
ate them as needed. For example, the writer of a li-
brary for use by MPI programs may want a private
group in order for the library procedures to commu-
nicate without treading on the caller’s namespace. A
communicator provides a way to communicate within
a group. Management of groups and communicators is
fully discussed, as are intracommunicators (to commu-
nicate within a group) and, briefly, intercommunicators
(to communicate between groups). Each process has a
rank within each group to which it belongs. The heavy
discussion of intercommunicators is left until later.

Chapter 6 discusses topologies. An MPI topology is
a logical shape of the set of processors executing the
MPI program. This logical layout is distinct from the
supporting hardware,although the implementation may
use the logical layout as a hint to the system when as-
signing processes to processors. A program might find
a rectangular scheme, where each processor has north,
east, south and west neighbors, for example, to be the
most convenient. The MPI facilities for defining and
grids and graphs are explained. Attention is given to
the mapping between rank (within the communicator)
and the coordinates (within the topology).

Chapter 7 discusses the MPI environment, including
startup and shutdown issues. Both external (for ex-
ample, command line) and internal (initialization and
finalization procedures) are discussed. The standard
does not require a command line startup means, but
the mpiexec command is required if one is supported.
Within the program, the required initialization and fi-
nalization procedures are described in detail, together
with synchronization requirements for their use and the
associated inquiry procedures. Version, environment,
timing and error reporting facilities are also covered in
this chapter.

Chapter 8 discusses MPI profiling. Each MPI entry
point has associated with it an alternative entry point
of the same name (in a different library) which enables
profiling of MPI programs. Thus, any MPI program
may be profiled easily. This profiling is standardized
because it is unreasonable to expect suppliers of MPI
profiling tools to have access to the source code for
every different implementation of MPI (especially the
vendor-specific highly optimized versions where the
profiling tool may add the most value).

Chapter 9 discusses some miscellaneous issues, in-
cluding the size of MPI (why is MPI so big?) and
gives advice on writing portable MPI programs. The
answer to the “why is MPI so big?” question, of course,

Book Reviews 59

reduces to a desire to include a wide range of func-
tionality, while also providing ease of use in straight-
forward situations. As is usually the case, portability
is ensured by writing standard-conforming programs.
These books take care to inform the reader of the nu-
ances of the MPI standard.

Moving on to Volume 2, Chapter 1 repeats some of
the conventions stated in Chapter 1 of Volume 1. It also
explains the motivation for increasing the functional-
ity (after the “why is MPI so big” discussion) with the
introduction of MPI-2. To remain competitive, MPI-2
acquired dynamic process management available with
PVM, one-sided transfers available with Cray’s shmem
library, a parallel file system available with IBM and
Intel systems and other experimental systems, bindings
for C++ (rather than C-only) and modern (rather than
archaic-only) Fortran, and definition of some ambigu-
ities and provision of some conveniences sought by
programmers. The plan of the second volume is set.

Chapter 2 discusses some miscellany, including MPI
interoperating with threads, interlanguage interoper-
ability, some status issues, and MPI’s built-in memory
management. The interaction of MPI and threads is
especially interesting because while MPI may be used
in an environment supporting multithreaded programs,
the basic fact of MPI’s process-based perspective re-
mains. Thus, one approach for the programmer is to
allow only one thread per process to call MPI at all. In
fact, only one thread may make some MPI calls. With
the growing popularity of multiprocessor nodes, this is
a welcome discussion.

Chapter 3 discusses process management issues.
The goal is to provide a process model which applies
to a wide range of implementations while avoiding re-
sponsibilities of host operating systems. Determinism
and MPI-1 compatibility are requirements. Thus, the
targets include MPPs managed by a batch queuing sys-
tem, networks of workstations with various manage-
ment schemes, and even large SMPs. This work was
written too early to discuss how MPI’s process model
will interact with grids (but see Chapter 6 below). Pre-
sumably, some accommodation will be made (perhaps
with MPI-3?), at least when grids have stabilized at bit
more than at present.

Chapter 4 discusses “one sided” communication.
Cray’s shmem library enables one-sided communica-
tion, adding similar capability to MPI widens the range
of application which may be efficiently supported (and
some programmers find one-sided to be simpler than
matching sends and receives, even if synchronization
issues remain). But how to support one-sided transfers

across an arbitrary network with heterogeneous proces-
sors? The MPI solution is to define a window of mem-
ory and restrict the transfers to offsets within the win-
dow. While a bit cumbersome, the model appears to
be able to be implemented on a wide variety of proces-
sors without too much operating system support. The
model is fully explained here.

Chapter 5 discusses communication between pro-
cesses designated by different communicators. Vol-
ume one discussed communication within one commu-
nicator (intracommunicator actions) while only briefly
mentioning communication issues between communi-
cators. Here, the discussion broadens to more thor-
oughly include actions among processes identified by
different communicators (intercommunicator actions).
These actions include broadcasts, reductions, scans and
barriers.

Chapter 6 discusses ways of extending MPI, includ-
ing debugger and profiling support. No specification
can anticipate the ways in which users and vendors will
want to extend it, the MPI Forum has the foresight to
provide hooks to provide standard means of extension
of the MPI specification. These include access to the
value of otherwise opaque constants and other infor-
mation internal to the state of the MPI system running
on each processor within an MPI program.

Chapter 7 discusses input/output operations from
within MPI programs. While MPI does not require
that language input/output be available on all processes
within an MPI program, it probably is. So what does
MPI mean by parallel I/O? It refers to input/output op-
erations performed in parallel by several processes on
the same file. This requires some definitions, if only to
cover all languages in use (C/C++/Fortran). The most
interesting feature, to me, is the info object which is
helpful when trying to optimize the input/output oper-
ations. It consists of hints-only specifiers which may
be ignored if not supported. Thus, the hints may not
change the semantics of the input/output operations
and may be extended if a vendor has particular needs
unanticipated by the MPI specification.

Chapter 8 discusses language binding issues in detail,
including the C++ binding, and archaic Fortran (For-
tran 66/77) and modern Fortran (Fortran 90/95/2003)
bindings. Unfortunately, the C++ binding came prior
to the C++ 98 standard and does not take advantage of
templates (which were brought into the C++ standard-
ization process very late before release of the C++ 98
standard). However, the binding, the issues faced and
decisions made are explained clearly. An effort to take
full advantage of modern Fortran features seems not to

60 Book Reviews

have been made which is harder to understand. Fortran
95 was the reigning standard when MPI-2 appeared,
Fortran 90 having been available for several years (to-
day, Fortran 2003 is the current standard, compilers are
now implementing the new features of Fortran 2003
steadily). A binding for modern Fortran which takes
better advantage of its modern features would make
these features, and the optimizations they enable, avail-
able to message passing programmers. But again, the
issues faced and decisions made are explained clearly.

Chapter 9 is a summary. It contains a few notes and
comments. The quotes about this generation being the
first and last generation of message passing program-
mers may or may not be true, given the longevity of
the client-server paradigm and the coming of grid com-
puting. (On the other hand, Fortran seems poised to
include co-arrays in the just-now-commencing Fortran
2008 standard.)

I am glad to write that the authors successfully gloss
the MPI specification, providing insights into every
detail of MPI. Aside from the sheer completeness of
these books taken together, I found their greatest assets
are the discussions contained in the rationales, advice
to users, and advice to implementers. These paragraphs
provide explanatory context for the dry, succinct prose,
the necessarily cover-all-cases mode of expression of
the specification itself. For example, why does MPI not
allow a process to read from a buffer once it has been
set for transmission? That shouldn’t hurt, should it?
The buffer may be unmapped from the virtual memory
of the transmitting process, in order to be available to
a DMA port or other independent I/O processor. Even
an experienced message passing programmer may not
have thought of that issue, at least if not present on the
platforms in use. I found insights such as this to be
helpful when trying to understand message passing as
implemented by MPI.

So message passing has moved to MPI-2 as the most
popular way to go, with various other schemes being
left progressively further behind. After so much time,
it’s amazing, at least to me, that no new paradigm be-
yond message passing has become widespread for mas-
sively parallel programming. Yet I recently read [1]
how message passing is considered fundamental both
to physics and to computer science. Perhaps message
passing is here to stay for longer than otherwise imag-
ined, perhaps a higher level of expression will be found.
But the basic efficiency of message passing indicates
that even that future higher level paradigm will likely
be implemented via message passing, at least where the
network is distinct from the processors. And until that

higher level of expression is popular, MPI appears to
have cornered the market as the message passing library
of choice. With documentation of the high quality of
these books available, MPI can more easily continue in
that role. I will certainly keep both volumes of MPI –
The Complete Reference handy by my workstation.

Dan Nagle
Purple Sage Software Inc.

USA

Reference

[1] M. Mézard, Passing Messages Between Disciplines, Science
301 (2003), 1685–1686.

Parallel I/O for High Performance Computing by
John May, Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA. 2000. ISBN: 1-55860664-5

There is much to like about John May’s book,Parallel
I/O for High Performance Computing. First of all, it is
a book about that most neglected area of computer life,
I/O, especially I/O to storage devices.

Then there is its exceptionally broad coverage of the
subject. After the introduction, the book starts with a
chapter on the low level of storage devices and methods
used to interconnect them. Then, it marches, chapter
by chapter, up the abstraction hierarchy. Chapter three
is devoted to file systems, mostly based on Unix like
semantics. Section four of this chapter contains the
real justification for the book. It explains in clear and
concise language, why the "traditional" mechanisms
used for I/O in more typical systems aren’t sufficient
for high-performance scientific workloads.

Chapter four is a slight, but appropriate, detour from
the hierarchy and discusses the various access patterns
used by high-performanceapplications and ways to op-
timize their I/O performance. Then we go back to as-
cending the hierarchy with chapter five on low-level
software I/O interfaces such as HPF and MPI-I/O. Next
up the hierarchy is chapter six, on scientific data li-
braries such as NetCDF and HDF. Then one more de-
tour, this time into special purpose I/O techniques such
as out of memory computations (what to do when your
intermediate results don’t fit into available memory),
and I/O for checkpoints. The eighth and final chapter,
at the highest abstraction level, focuses on metadata

Book Reviews 61

(both directory data and other information such as file
descriptions and formatting details), database manage-
ment systems, and a bit on knowledge discovery in very
large data files.

Given the wide range of topics in a relatively short
book (305 pages of main text), the coverage of each
topic is necessarily shallow. Compensating for this
are suggestions for further reading at the end of each
chapter, as well as a 16 page glossary and a 174 entry
annotated bibliography.

Another likable aspect of this book is the writing
style, which is clear and direct. The author adds in-
formation that compares alternative approaches, giving
the advantages and disadvantages of each, and indicat-
ing which ones are primarily of historical interest (at
least at the time of writing, see below). This makes
the book much more than what it could have been; a
mere boring compendium of software capabilities and
specifications.

Inevitably, there are a few things that could be im-
proved. The necessarily brief coverage of each topic
can lead to misleading impressions. In addition, most
of the material is aimed at distributed memory com-
puter systems, such as clusters. While this does high-
light the areas where parallel I/O is most difficult, it
results in giving short shrift to the problems encoun-
tered with I/O for high performance computing even on
shared memory systems. There are a few factual errors,
but these aren’t significant and could be corrected with
the deeper study required from someone really work-
ing in this area. The chapter on scientific data libraries
contains several five page long code listings that are
more tedious than enlightening, but even here, the key
comments are highlighted in a bold font, giving the
reader the opportunity to get the gist of what is going
on without reading the whole listing.

One other issue that is due to its wide coverage, is
that the book is more exposed to change than most other
books as a result from ongoing technological develop-
ments. For example, a book on file systems design
would have to keep up with developments only in that
field but this book must keep up with at least the major
developments in the whole range of fields that it cov-
ers. The book’s age (copyright 2000) shows up quite
clearly in some technology areas. Examples of newer
technologies not covered in the book include serial in-
terconnects for disk drives and the growth of switched
fibre channel storage area networks (indeed it doesn’t
mention fibre channel wire speeds faster than one gi-
gabit per second.). Problems can also show up in other
ways. For example, the discussion of networked at-

tached storage focuses on the Network Attached Secure
Disks (NASD) work. However, this work has, so far,
not resulted in successful products. The flip side is that
the book ignores the network attached storage products
of such companies as Network Appliances and EMC
as stand alone file servers. All of this means that read-
ers would benefit substantially from an updated second
edition that would include new developments and per-
haps drops some of the topics that have gone out of
favor.

There are at least two potential audiences for this
book. One is people coming to high performance com-
puting from a subject matter specific background such
as physics or meteorology. These people will benefit
from the discussions of the basics of I/O as well as from
exposure to the I/O related issues in their new field. The
second is people who have a background in computer
science and want to broaden their horizon by learning
more about this specialized area. People in this group
could probably skip the first 70 or so pages as the mate-
rial covered there would be a review of material covered
in basic computer architecture or OS classes. However,
they will benefit immensely from the rest of the book,
as that material is generally not covered anywhere else.

Overall, this is a very useful introduction to a field
that has far too few books like it. The style is easy to
follow and it imparts a basic understanding of the key
issues, without becoming boring or too deeply techni-
cal. A reader certainly won’t learn all he needs to know
about the field from this book, but any serious user of
any of the techniques will have the references he needs
to find out more.

Stephen Fuld
USA

Linux for Non-Geeks, Rickford Grant (Book + 2
CDs), No Starch Press, San Francisco, USA, March
2004. ISBN: 1 59327 034 8

The title is amusing, but the subtitle of Rick-
ford Grant’s book is more informative: “A hands-on,
project-based, take-it-slow guidebook”. As such, it in-
cludes everything that you will need to experiment with
Linux.

As the title says, this is not a book for those who
know and love Linux already (that is to say, geeks). It
is heavily oriented towards those of us who come from

62 Book Reviews

Windows and Mac desktops, and want to know what
all the fuss being made over Linux is about.

Firstly, in case anyone hasn’t been paying attention
recently, Linux (or GNU/Linux as it should more prop-
erly be known) is a family of generally free computer
operating systems. I say free because, since the ker-
nel, essential support structures, development tools and
productivity sets are nearly all free of restrictive copy-
right. I say family because, since the components are
nearly all free, a wide variety of people and organi-
sations have developed Linux distributions that reflect
particular ideas of how a system should function, how it
should be maintained, and how much flexibility, utility,
or security it should offer to the user. There are also
different distributions that focus on providing systems
specialised for use as servers, routers, graphics servers,
database servers, multimedia desktops, office desktops,
or even network clients. A growing number of these
different distributions are available in the form of live-
CDs. The way these work is that you boot your com-
puter from the CD, and instead of going through the
process of installing the system to your hard disk and
configuring everything step by step, the system loads
into memory and auto-detects all hardware on-the-fly.

Despite all the differences listed, Linux distributions
are more similar than they are different, so that expertise
gained with this book’s system and projects will transfer
well to other Linux systems. The particular flavour
of Linux chosen for distribution with Linux for Non-
Geeks is Fedora Core, which is a product of Red Hat,
the biggest company in the global Linux market.

Linux for Non-Geeks consists of a sequence of
projects that will take you through the process of un-
derstanding what Linux is, how to install it using the
CDs included with the book, how to set it up for your
preferences, and then how to learn to do everything that
you might reasonably want do using a desktop com-
puter. Anyone who comes to this book with experience
of using Windows or Macintosh desktop systems will
have no trouble following the projects, but will find
many interesting new differences from what they are
already accustomed to.

To be more thorough in my description, the material
covered in the course of the book includes:

– Understanding the differences between Linux and
other systems, and the advantages of Fedora Core
Linux (the flavour of Linux provided on the en-
closed discs).

– Installing and configuring Fedora Core, user ac-
counts, and the Gnome desktop manager.

– Setting up hardware such as printers, cameras,
scanners and network interfaces.

– Managing and updating the system using the pro-
vided system management utilities.

– Setting up Internet applications including browser,
email, FTP and IRC programs.

– Accessing the vast repositories of Linux software
available on the Internet.

– Managing data and archiving it using Linux tools
and CD burning packages.

– Using the included office suite (OpenOffice) to
best advantage.

– Loading and running multimedia including DVD
movies and music on CDs, on file as MP3s, or via
streaming media form the Internet.

– Coping with multiple languages, which is a par-
ticular strength area for Linux.

– Installing and managing extra fonts for both print-
ing and onscreen use.

– Exploring the power of the command line.

At this level, the only areas where the author might
usefully have included some extra coverage are in un-
derstanding Linux shell scripts and in selecting and ex-
perimenting with the vast choice of available develop-
ment tools, but it has be allowed that this is, at most, a
minor quibble. One area that is thoroughly glossed over
in the book is the subject of device drivers and how one
makes devices work with Linux. The is some justifica-
tion for choosing to skip lightly over this subject, since
the issues that arise are highly technical, more suitable
for genuine Linux geeks than the designated audience
of non-geeks. Another justification is that Linux device
support is remarkably good for most standard devices,
and the drivers are loaded automatically and silently
so that things work correctly. Coping with the situ-
ation when a device fails to work is somewhat more
technically detailed than is appropriate for the level of
the book, although I felt that the author provided good
enough links to further resources that any non-geeks
who wanted to become geeks could do so by starting
with the recommended reading given at the end of the
book.

While the style of the book is informal and gently
humorous (but not annoyingly so) the pedagogical ap-
proach of the author is rigorous and thorough. Al-
though it may seem so upon casually flipping through
the book, this is not a basic recipe book that tells how
to use particular pieces of software. No indeed, this is a
book that teaches the kind of questions to ask and how
to answer them. This is based upon the best principles
of Linux (and Unix systems in general), one of which

Book Reviews 63

is that there is generally more than one right way to
do things. That, by the way, is one of the appeals of
Linux to the scientific mind, that flexible thinking is
possible, and may very well explain why Linux feels
so refreshing after being stuck with the other desktop
alternatives (no names mentioned!) for too long.

An important point worth mentioning is that using
Linux for Non-Geeks as a way to experience and learn
about Linux does not require you to scrape your com-
puter clean of Windows,if you already have it and aren’t
sure about being ready to commit fully to Linux yet.
Rickford Grant describes quite clearly in the book how
to go about making Linux share your computer with
Windows. Being a curious and dedicated reviewer, I
adopted the harder path of setting up a dual-booting
Windows/Linux system according to the instructions
given in the chapter on installation, appropriately called
Making Commitments.

I came out of that chapter with a choice each boot
time of starting up Linux or Windows, and that’s the
way it still is, but the Windows boot option is hardly
ever used these days. Besides, Linux provides transpar-
ent access to all the data I have stored under Windows,
together with programs for dealing with most of that
data. I can handle Microsoft Office documents using
OpenOffice, which is installed by default with Fedora
Core, I can play stored music and watch stored movies
with a variety of supplied programs, I can develop and
compile code written in Fortran, C, C++, Java, Perl,
Tcl/Tk and many others, and support for doing so is
there straight “out of the box” as it were.

What if you want or need a program that isn’t set
up when you install your Fedora Core system? Well,
the book has the answer to that as well. Chapter 10
is a step-by-step approach to making your system in-
definitely upgradable by use of the automated package
management tools. You open the package manage-
ment program (Synaptic is the one chosen for use in the

book), search by keyword or name for the program you
need, and click to mark it for installation when you find
it. When you’ve found all the packages you need, click
the install button and the packages are downloaded,
installed, and ready to run. Since this is Linux, you
don’t even need to reboot before you can run them.

This review was entirely written using OpenOffice
Writer running on the Fedora Core Linux system pro-
vided with the book. It is only fair to point out that the
review would have been finished sooner if I hadn’t fol-
lowed the instructions given in the book for installing
the hopelessly addictive Frozen-Bubble.

As an introduction to Linux and an explanation of
what all the present fuss is about, Linux for Non-Geeks
provides the gentlest possible entry to the world of
Linux, provides enough handholding to get the reader
through the initial mysteries of a new operating system
environment, convinces the reader that there is still
more worth exploring, and leaves them with enough
experience to go solo. As you can probably tell by now,
I give the book a strong commendation and the author
a gold star.

Mark Madsen
Geneva, Switzerland

About the Reviewer

Mark Madsen is a consultant specialising in Inter-
net issues. His published research spans cosmology,
mathematics, biology, philosophy, and computer sci-
ence. His current role is as Principal of his consulting
organisation Manige Solutions (www.manige.co.uk).
Mark presently divides his time between Cambridge
and Geneva.

