
Scientific Programming 12 (2004) 57–62 57
IOS Press

Book reviews

Industrial Strength Parallel Computing: Program-
ming Massively Parallel Processors,by Alice E.
Koniges, Academic Press / Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1999. ISBN:
1558605401

Industrial Strength Parallel Computing is an indus-
trial strength book. It has 597 pages, with a Pref-
ace, 25 Chapters, an Appendix, a Glossary, an Index
and a Contributors section with a paragraph about each
contributor. 17 of the 25 chapters are case studies of
making numerical applications run on large scale par-
allel computers. Each chapter has its own bibliogra-
phy. The work reported here is the result of the Paral-
lel Applications Technology Project, supported by Los
Alamos National Laboratory, Lawrence Livermore Na-
tional Laboratory, and Cray Research, Inc. Who should
read this book? Anyone who plans to port a program
from a sequential machine to a large scale parallel pro-
cessor will benefit from the experiences described here.
Also, anyone who wants to quickly survey the range of
work done on parallel machines will find this book an
authoritative source. The writing is consistently good
technical writing, the editors and the authors have done
a good job of presentation.

So what does ‘Industrial Strength’ mean? One has
an image, I suppose, of a large factory with many busy
sections, with railroads supplying resources and remov-
ing products. In the case of computers then, industrial
strength describes the largest computers available, with
modern networks playing the role of the railroads. The
authors clearly mean industrial strength in the sense of
very large capacity, but also, I think, in the sense of
cost-effective, dependable, and known to be workable.
In the end, a meaning of routinely available, a normal
way of production, a choice easily made, is also in-
tended. So the thesis to be demonstrated is that large-
scale parallel computing is ready for everyday use, as
any other segment of computing is used everyday. The
authors pitch the benefits to be gained as if trying to at-
tract capital investment for a proposed, perhaps novel,
factory.

The first six chapters are a review of the state-of-the-
art, starting with Flynn’s Taxonomy. Then SMP, DMP
and ccNUMA systems are described. The authors set-
tle on the term MPP to describe the parallel hardware
being used (largely, but not exclusively, Cray T3D and
T3E systems). The issues of software methods, mes-
sage passing, Cray’s shmem library, HPF, threads, and
various mixed models, are discussed. Software tools,
such as Cray’s Apprentice tool, and debuggers, are then
described. Since single processor performance is an
important scale factor in parallel computation,a chapter
describes techniques for achieving high performance
with a single processor. The last of the first six chap-
ters contains a discussion of parallel scheduling issues,
necessary to integrate parallel computing with the rest
of computing, especially in an age of networks where
the MPP is just another server. Gang scheduling is de-
scribed as the preferred scheduling strategy. The au-
thors’ use of the term MPP avoids getting stuck split-
ting hairs among ccNUMA, DMP with single proces-
sor nodes, DMP with multiprocessor nodes, and any
other architecture one may imagine. The authors settle
on the “scaled problem” (that is, twice the problem size
is compared when twice the number of processors are
used) as the appropriate measure of parallel speed-up.

The heart of the book is the 17 case studies. Top-
ics range from environmental studies, to petroleum
reservoir management, fluid dynamics, plasma studies,
solid state physics simulations, radar reflectivity sim-
ulations, nuclear magnetic resonance analysis, molec-
ular dynamics, genetic studies, and image processing.
So a wide range topics is discussed, and therefore a
wide range of mathematical methods are employed.
A helpful table inside the front cover and repeated
elsewhere coordinates model, methods, tools and tech-
niques. Most chapters begin with a description of the
mathematical background, and how the mathematics
leads to the computational methods used,a few chapters
leave the mathematics to the references. Then the im-
plementation is described, as are the results achieved.
Attention is paid to the scaling properties of the pro-
gram. The descriptions are detailed enough to allow a

ISSN 1058-9244/04/$17.00 2004 – IOS Press and the authors. All rights reserved

58 Book reviews

worker to benefit when trying to decide how to paral-
lelize an application in the same or in another field.

I’ll choose two case histories to illustrate the 17 pre-
sented in the book. My first choice is Ocean Model-
ing and Visualization, Chapter 7. The code was ported
from sequential processors to the parallel processor us-
ing the Apprentice tool. The authors used compiler
options and optimized libraries to optimize the code
for a single processor of the parallel processor. They
replaced if and where constructs with masked opera-
tions (an addend added conditionally is instead always
added after being multiplied by 0 or 1 conditionally) to
keep the processor’s pipelines from being disrupted by
jumps. The authors note that vector-vector (BLAS1)
routines, which their program currently uses, could be
replaced with matrix-vector or matrix-matrix (BLAS2
or BLAS3) routines to give better cache re-use and a
higher computational rate per processor. Nevertheless,
the per processor speed on the scaled problem is nearly
constant up to 256 processors, to a rate of 3.55 Gflops.
The authors also discuss the tools used to visualize the
results. There are 21 entries in the bibliography for this
chapter. This is “Industrial Strength” parallel process-
ing in the sense of being large-scale problem solving,
and very necessary for modern society.

The second case history I’ll choose is Functional
Magnetic Resonance Imaging Dataset Analysis, Chap-
ter 21. MRI is used to image the head and brain. Slice
after slice is taken, a spiral really. Each slice must be
rendered independently. Then, since the head in ques-
tion is likely to have moved slightly while the scan is
taken, the rendered slices must be re-aligned. Then the
slices can be assembled into a three dimensional image
of the brain. This is previously done by a sequence
of programs running on high-end workstations. The
computation required several hours. Thus, the patient
had left the building before the images were available.
The programs were run via a shell script as a sequence
of JCL. These calculations were moved to an MPP.
There was an attempt to demonstrate this during the
Supercomputing ’96 conference. The use of the MPP
allows the results to be available in minutes rather than
hours. Flexible scheduling of the MPP is required, a
patient is never ready at the exact second originally
scheduled, and the patient can’t be held for too long
afterward. The rapid turn-around provided by the MPP
allows feedback, concentration on a region of interest,
or other adjustments to be made while the patient is
still in the scanning device. This is an improvement of
quality, not merely computational rate or other quantity.
Furthermore, given modern networks, the patient may

be, say, in Los Angeles, the MPP may be in Pittsburgh
(where it actually was for this work), and the specialist
may be in Boston, who can then communicate with the
attending physicians in Los Angeles, completing the
feedback circuit. There are 21 references in the chapter
bibliography. Beyond considerations of scale, I believe
this is what the authors mean by “Industrial Strength”
parallel computing. It’s a valuable part of (what ought
to be) the routine way of doing business. The benefits
to patients are obvious.

The last two chapters are a summary of the lessons
learned from the case studies. Some of the paralleliza-
tion efforts ported an existing code, others started from
the equations making a new application especially for
the MPP. Finally, the authors make some predictions
regarding the future of parallel computing. The penul-
timate chapter has the only sentence with which I really
take issue. The sentence is the question “Should the
basic language of the code . . . Fortran 77 be updated
to . . . Fortran 90/95 . . . ?”. I must complain. Any
Fortran 77 program is a valid Fortran 95 program. The
language lawyer who objects may be reminded that
compilers are not refusing to recognize the very few
features actually deleted from the standard. The ques-
tion is, rather, which features of Fortran 95 (or really,
these days, Fortran 2000) should be used. I can think
of two categories of features. One is features which
provide similar functionality to that provided by a For-
tran 77 feature but are simply better. Free format over
fixed format, or the kind mechanism over “*n” nota-
tion, or modules over common blocks, are in this cate-
gory, certainly. The second set of features are those fea-
tures which standardize abilities provided with many
compilers, but each with a different spelling. Mem-
ory management is an example. Various spellings of
“malloc”, or “heap alloc”, or whatever, are supported
as extensions by various Fortran 77 compilers. Surely,
the Fortran 95 standard spelling of “allocate” is to be
preferred. In the ultimate chapter, the authors should
be commended for daring to make predictions. Split/C,
UPC, and Co-Array Fortran are improvements over
message passing, perhaps mention here will encourage
their wider availability. Wider availability, of course,
will in turn, encourage greater use.

The sole appendix shows one way of combining
message passing with threading, which will be useful
on distributed processors where each node is a shared
memory system. MPI is combined with pthreads to
do so. The example code is written in C, rather than
C++ or Fortran (either of which could have used en-
capsulation and overloading), so all the gory details

Book reviews 59

are visible. The authors do mention that they have a
Fortran binding for pthreads, but it’s not part of the
standard. Today, Hanson et al. have a portable Fortran
binding (ACM-TOMS, 9/2002, #821) to pthreads, and
Fortran 2000 has its Interoperability with C features, so
there are more possibilities. But the “Fortran can’t use
pthreads” canard needs no emphasizing, and I would
have appreciated different views of the multifaceted
topic of threading while passing messages. An exam-
ple where OpenMP provides the threading would have
helped here, and perhaps would have been less com-
plex. Maybe I’m complaining too much, this is a topic
easily made very complicated, and a simple example is
not unwelcome.

Is the author’s thesis demonstrated? Overall, I think
so. Certainly, the case studies are all successes. Is
parallel computing all that difficult? Well, perhaps it
is. Obviously, if one must decide between porting an
existing, working code, on the one hand, and starting
from scratch, on the other, there’s considerable effort
involved. But this book shows a wide variety of work,
on a wide variety of ranges of length scales, being par-
allelized successfully. These applications scale up to
several tens or to several hundreds of processors. Most
of the authors of the case studies describe future efforts
which will benefit their applications further. On the
other hand, probably because it’s still the only widely
available scheme that scales satisfactorily, we’re still
passing messages (after all these years!). So to this
extent, at least, the glass is half full or half empty.

Perhaps “industrial” use will spur the drive for a bet-
ter paradigm. A wider range of applications will surely
motivate the search for a more general paradigm than,
say, HPF, or something easier to use than message pass-
ing. Maybe that more general scheme is Co-Array For-
tran. But what the authors do clearly demonstrate that
what was once “bleeding edge” experimentation is now
merely leading edge work, with a well established body
of practice available for guidance. That alone makes
this book a valuable read, and I certainly enjoyed, and
was educated by, reading it. I am convinced that large
scale parallel computing is ready to be a part of the
usual way of doing business wherever it’s needed. And
there are needs for it. These days, that means being
a compute server on a network. That makes parallel
computing “Industrial Strength” by any definition.

Dan Nagel
Purple Sage Computing Solutions Inc.

USA

Java Number Cruncher: The Java Programmer’s
Guide to Numerical Computing, by Ronald Mak,
Prentice-Hill PTR, Upper Saddle River, NJ, USA,
2003. ISBN: 0130460419.

Java for numerical computing? Are you kidding!?
Until recently, such a combination would indeed draw
well-deserved howls of laughter from serious practi-
tioners of numerical computing. The huge overhead
of Java’s traditional interpreted-code implementation
has resulted in run times that have been typically at
least an order of magnitude higher than traditional lan-
guages such as Fortran-90 or C/C++. As a result, Java
has been a non-starter for large, numerically intensive
scientific computation.

But times are changing. Partly because of the exten-
sive interest in Java programming in the business and
Internet world, “just-in-time” compilers and the like
have been developed that result in much faster execu-
tion times, nearly competitive with C and Fortran code
in many cases. As a result, computational scientists
are now seriously looking at potential uses of Java for
scientific computing. But who is going to write sci-
entific Java? Perhaps some numerical scientists will
become proficient in Java. But maybe we should also
try to teach Java programmers the basics of numerical
computing. Indeed, given the increasing scarcity of
computer science graduates who are also trained in nu-
merical analysis, perhaps this is a more realistic route
to take.

Ronald Mak’s book is very timely in this regard.
It is targeted directly at beginning (or even not-so-
beginning) Java programmers who would like to be-
come familiar with numerical computing. It does not
pretend to be an traditional course in numerical anal-
ysis, which quite frankly many present-day computer
science undergraduates avoid like the plague. Rather,
it teaches Java programmers what they need to know to
be numerically literate, so as to be equipped to take on
serious technical computing tasks when needed.

The book starts out by describing in detail the IEEE-
754 floating-point standard, both single and double
formats. The author first drives home the point that
IEEE arithmetic is not the same as the real number
system – for example, there is potential for significant
loss of accuracy when two nearby floating-point values
are subtracted. The book continues with topics such
as the potential for difficulties when a large number
of floating-point values of different sizes are summed,
finding roots of equations using basic iterative tech-
niques such as Newton’s iteration, finding interpolating
and data-fitting polynomials, and linear regression.

60 Book reviews

Chapter 7, for example, discusses the trapezoidal
rule and Simpson’s rule for integration. It also presents
techniques for numerical solutions to differential equa-
tions, including Euler’s method and the Runge-Kutta
scheme. Again, the restraint that the author exercises
here is remarkable. I’m sure that most numerical an-
alysts writing such a book could not resist the temp-
tation to include here a furtive write-up of their fa-
vorite advanced techniques, say for numerical quadra-
ture. Space could also have been devoted to detailed
discussion of techniques for numerical solutions of 2-
D and 3-D partial differential equations. Instead, Mak
continues to stick to his formula of providing a very
detailed and readable account of basic numerical meth-
ods.

Beginning in Chapter 9, the author discusses matrix
computations. Here, as in some previous chapters, the
author provides a Java software package, which in this
case is for matrix operations. With this facility, the
author can focus on the concepts of matrix computation
rather than on the detailed mechanics of carrying out
such computations. Issues such as matrix condition
numbers are discussed in Chapter 11. Even here, the
focus is on concepts rather than on theorems, proofs or
advanced implementation techniques.

Part IV (beginning with Chapter 12), entitled “The
Joys of Computation”, starts out by saying “Numeri-
cal computation isn’t all work and no play”. In these
chapters the author gives several examples of computa-
tions using a “BigNumber” and a “BigDecimal” pack-
age, which perform high-precision integer and floating-
point computation, respectively. Some of us would
choose to differ with Mak’s characterization of this ma-
terial as “play”, since in recent years numerous im-
portant mathematical and scientific results have been
obtained using such high-precision computations. Be-
sides, much of our Internet commerce relies on secu-
rity schemes based on high-precision arithmetic. In
any event, this material is actually quite well written.
The author covers topics such as large integer factoriza-
tions, computing mathematical constants and functions
to high precision and fractals.

In summary, this book would make an excellent un-
dergraduate course in numerical computing, suitable
for a wide range of students in computer science, phys-
ical science and engineering. It is also very well suited
to professional Java programmers who would like to
become more familiar with the world of scientific com-
puting. It has a practical, down-to-earth approach that
avoids exotic material, opting instead for a thorough
and understandable coverage of basic material. It in-

cludes (and in fact relies on) software available from a
website.

Many students or other readers, after completing
Mak’s book, will continue their careers with a greater
appreciation of the issues and techniques of numerical
computing, although perhaps they will not specialize
in this arena. Others may find the topic sufficiently en-
gaging that they will pursue more serious coursework
and career paths in scientific computing. Either way,
the computational science community will be enriched
as a result.

David H. Bailey
Lawrence Berkeley National Laboratory

Berkeley
CA 94720

USA

Four Colors Suffice: How the Map Problem Was
Solvedby Robin Wilson, Princeton University Press,
USA, 2002. ISBN: 0691115338.

Robin Wilson’s Four Colors Suffice: How the Map
Problem Was Solved is a popularization of the history
and proof of the four-color theorem. A coloring of a
map is an association of a color to each “country” or
“region” of that map, so that bordering countries have
different colors. In 1852, Francis Guthrie first voiced
the hypothesis that four-colors are enough to color any
planar graph. (Colloquially, this can be understood as
the number of different colors of ink a mapmaker might
need to keep in stock.) Trying to prove the truth of this
conjecture was a Siren’s song for many distinguished
mathematicians for the next century and a quarter.

A bit of formalization clarifies the problem. Guthrie
must have been concerned with countries that share not
just a common point but a border segment. Otherwise,
a pie-wedge map would require arbitrary many colors.
Similarly, countries must be assumed to be contiguous.
Allowing disconnected empires, like pre-Bangladesh
Pakistan, can require an unlimited mapmaker’s palette.
We are, of course, concerned with maps on a plane or a
sphere – donuts and more complex topological spaces
require more colors.

Wilson provides a facile ménage of history and math-
ematics. He demonstrates the projection equivalence of
polyhedra and planar maps, and explains how Euler’s
formula (the number of regions, including the exterior
region, plus the number of vertices is two more than the
number of edges, or R + V = E + 2) can be derived.

Book reviews 61

This leads to a proof that every planar map must have
at least one country with five or fewer neighbors. Fo-
cusing on cubic maps (ones where exactly three edges
meet at each vertex, because for coloring, these are the
hardest maps), he presents the critical counting theo-
rem: 4C2 + 3C3 + 2C4 + C5 − 0C6 − 1C7 − 2C8 −
3C9 − . . .= 12, where Ck is the number of countries
with k sides. This formula has some surprising rami-
fications, including the fact that a cubic map with no
regions with four or fewer neighbors must have at least
twelve pentagons, a result most familiar in the twelve
pentagons of a soccer ball.

Guthrie passed his hypothesis to his brother Fred-
erick Guthrie and from there to Frederick’s professor,
Augustus De Morgan (perhaps most famous for De
Morgan’s laws) and on to the algebraist Arthur Cayley.
Cayley introduced the idea of the minimal criminal: the
smallest map needing five colors.

In general, proofs of the four-color theorem were re-
ductio ad absurdum with respect to the minimal crimi-
nal: one shows certain properties of any minimal crim-
inal and then shows that the four-coloring of some
smaller map (as the criminal is minimal and all smaller
maps are four-colorable) enables the four-coloring of
the minimal criminal. One can easily show that the
minimal criminal cannot contain a digon (two-sided
region), or triangle, because such a region can be re-
moved, the reduced map four-colored, and then re-
moved digon or triangle reinstated without requiring an
additional color.

Cayley couldn’t prove the theorem but presented it
to the London Mathematical Society in 1878. A year
later, Alfred Bray Kempe, a member of the society,
published a proof of the theorem. Kempe’s proof in-
troduced the important notion of “unavoidable config-
urations.” For example, the counting theorem shows
that every minimal criminal must be in at least one of
four unavoidable configurations: having as its simplest
polygon a digon, a triangle, a quadrilateral or a pen-
tagon. Kempe showed that each of these configurations
could be colored with four colors. The digon and trian-
gle are trivial. For the quadrilateral, he introduced the
Kempe chain: a subgraph of alternating opposite side
colors between one pair of opposite sides. Using the
Kempe chain allows recoloring an enclosed subgraph
to free a color for the quadrilateral. He applied the
same argument twice to show how to color maps whose
smallest region is a pentagon.

Kempe’s proof was widely accepted, at least for
eleven years, until Percy Heawood inconveniently pre-
sented a graph for which Kempe’s algorithm failed. The

problem with applying the Kempe-chain method twice
was that the second application does not necessarily
preserve the conditions that enabled the first. However,
Kempe’s notion of dividing the space of maps into sets
of unavoidable configurations was fundamental to the
subsequent work on the problem.

Kempe also introduced the notion of reducible con-
figuration: an arrangement of countries that cannot oc-
cur in a minimal criminal. As the above arguments
show, a triangle is a reducible configuration. The focus
of the subsequent work on the four color theorem was
to find an unavoidable set of reducible configurations –
that is, a set of subgraphs such that every cubic graph
was in one of the sets but that every such set contained
a reducible configuration. Hence, none of these sets
could contain a minimal criminal.

Wilson’s next few chapters are devoted to discussing
the incremental progress on the theorem, small results
that contributed to the ultimate proof but signaled the
frustration of those who worked on the problem along
the way. The four-color theorem is simply stated, eas-
ily understood, and the proof techniques can be under-
stood by a bright high-school student. It was a contin-
ual source of distress to mathematicians in the first three
quarters of the twentieth century that the actual proof
was so elusive. Critical steps in this progression in-
cluded the notions of discharging and rings. Discharg-
ing starts by assigning each country a number called a
“charge.” For example, we might give a country with k
sides a charge of 6 − k. By the counting theorem, the
total charge of the graph is thus 12. We now progress to
discharging: moving the charges around the map, pre-
serving the total charge. For example, we could move
1/5 of the charge from each pentagon to its neighbors.
Using this tehnique, Wilson explains Paul Wernicke’s
result that a digon,a triangle, a quadrilateral, two touch-
ing pentagons and a pentagon touching a hexagon are
an unavoidable set. Eventually, unavoidable sets with
thousands of elements were constructed. If it could
only be shown that each element of such a set was re-
ducible, the theorem would be proven, but for obvious
reasons, mid-twentieth century mathematicians didn’t
traffic in proofs with thousands of cases.

Wilson also presents the key results of George
Birkhoff, who generalized Kempe’s work on chains to
the idea of rings of countries that divide the map in two.
By considering every possible coloring of the ring, it
is often possible to show that the countries within the
ring can be four-colored. Since the ring and countries
outside the ring are smaller than a presumed minimal
criminal, such a graph cannot be a minimal criminal.

62 Book reviews

Processing power increased. With the help of
the high-speed computers of the mid-1970s, checking
many cases became conceivable. Kenneth Appel and
Wolfgang Haken were the first to complete the proof,
relying on showing that a set of 1,936 graphs repre-
sented an unavoidable set of reducible configurations.
They eventually reduced this to a set of 1,405. Their
proof, as published, had 100 pages of summary, 100
pages of detail, 700 additional pages of back-up and
required 1000 hours of computer time on the fastest
computers. (Today, running their proof might take an
hour on a fast personal computer.)

There is no evidence the four-color theorem has ever
had any implications for actual mapmaking, but the
century and a quarter of work on proving the theorem
were foundational in the development of graph theory.

Wilson’s book supports several different readings.
On one hand,even a non-mathematician can come away
with proof techniques in graph theory, though admit-
tedly, a book on graph coloring would have been easier
for the non-mathematician to understand if it hadn’t
been printed in monotone.

The book can also be read as drama: the valiant
struggle of the mathematicians to slay the four-color
dragon, until at last the true princes succeeded. Unfor-
tunately for the storyteller, the history of the four-color
theorem has little sex and no bloodshed, so Wilson is
reduced to providing a catalog of eccentricities in an
attempt to prove what wild and crazy guys those math-
ematicians are. I, for one, tired of hearing snippets
such as how one professor always brought his dog to
class, while another’s wife had to color maps on her
honeymoon. However, such factoids may make the
work more accessible to the lay reader.

The critical philosophical issue exposed by the work
of Appel and Haken is a fundamental issue in the aes-
thetics of mathematics: Is proof an exercise in deduc-
tive logic or a social process? Many mathematicians
were unhappy with an unfathomable, unverifiable com-
puter program as a major part of a proof. Wilson quotes
an anonymous mathematician,

“In my view, such a solution does not belong to
mathematical science at all.”

Wilson also reports,

“Haken’s son Armin, by then a graduate student
at the University of California, Berkeley, gave a
lecture on the four-colour problem . . . At the end,
the audience split into two groups: the over-forties
could not be convinced that a proof by computer
was correct, while the under-forties could not be
convinced that a proof containing 700 pages of
hand-calculations could be correct.”

A nineteenth century mathematician would have
surely understood proof as social process; the path from
Russell and Whitehead through Gödel to Appel and
Haken makes the former more the current view. These
days, most now seem to regard computers as mathe-
matical tools, as appropriate to use in the proof process
as pencils, and understand not only the distinction be-
tween truth and communication, but the necessity for
both.

Robert E. Filman
Research Institute for Advanced Computer

Science/NASA Ames Research Center

