
Scientific Programming 11 (2003) 79–80 79
IOS Press

Introduction

This volume of Scientific Programming is the sec-
ond issue that has been devoted to a collection of pa-
pers on the recent parallel programming API OpenMP.
OpenMP is a set of directives with language bindings
for Fortran, C and C++, along with a few library rou-
tines, that have enjoyed broad support from computer
vendors. In the recent past, the original language defi-
nitions have been updated to accommodate features of
Fortran 90 and to eliminate minor differences between
the versions for the different programming languages.

The current collection of papers includes contribu-
tions from vendors as well as from researchers. The
topics indicate the diversity of related work. As with the
first issue, most of these papers have been selected from
the submissions to the European Workshop on OpenMP
2001, EWOMP, that took place in Barcelona,Spain, and
was organized by the European Center for Parallelism
of Barcelona (CEPBA).

Our first contribution comes from one of the develop-
ers of this API: Timothy Mattson from Intel is chairman
of the OpenMP Architecture Review Board (ARB), the
organization that was founded to maintain the language
definition. In this work, he first gives us a brief his-
tory of OpenMP and then considers how to evaluate
a programming model. He points out the strength of
OpenMP, the ease with which it can be used to cre-
ate parallel programs, and then the difficulty with this
model, the need for hard work to obtain required per-
formance levels under OpenMP in some large compu-
tations. OpenMP is actively maintained and the ARB
is working to extend the language in several ways to
alleviate this problem. Mattson outlines some of the
relevant work currently being performed by the ARB.

Several vendors have produced OpenMP versions of
popular numerical libraries, including the BLAS. Addi-
son and colleagues discuss their experiences when de-
veloping pure OpenMP versions of the parallel BLAS
and LAPACK libraries. As part of this effort they de-
scribe problems that had to be overcome and some that
still cause difficulties. One of these has to do with
data locality. Data locality is of critical importance
on almost all modern machines: even on shared mem-
ory platforms, it is of the utmost importance to maketo

the best possible use of cache. This implies that an
OpenMP user who desires to get the best possible per-
formance must take care to use cache well throughout
parallel regions. When these regions include multi-
ple calls to OpenMP libraries, it can be exceedingly
difficult to ensure consistency between cache usage.

The SPEC corporation has created a suite of OpenMP
benchmarks to enable the evaluation of OpenMP on
the current generation of computer hardware and their
compilers. It contains 11 programs in Fortran and C
from a variety of different application areas, and with
both medium and large data sets. In their contribution,
Aslot and Eigenmann describe these benchmarks and
their behavior in considerable detail. The reasons for
less than ideal parallel speedup is discussed for each of
the codes separately.

In another paper related to benchmarking activities,
Mueller proposes several tests that have the purpose
of determining whether compilers have implemented
several different optimizations. There is some tension
in OpenMP between the notion of performance trans-
parency, and the faithful translation of the user’s spec-
ification, and opportunities for optimization that over-
ride those directives. For example, some constructs
require a barrier synchronization unless explicitly sup-
pressed by the programmer. If the compiler is able
to determine that the barrier is unnecessary, the ques-
tion arises whether it should eliminate it. There is not
complete agreement on the answer to this. However,
Muller’s experiments are able to determine just what
conclusions the compiler implementers have reached
on a number of issues.

A good deal of compiler and tool research focusses
on techniques designed to improve the performance of
some class of OpenMP codes, on extending the range
of applicability of OpenMP, especially by enabling it
to run across clusters, and on assessing the need for
extensions to the OpenMP language standard in order to
accommodate the needs of certain kinds of application
programs. This volume would be incomplete without a
cross-section of papers in these areas. We have chosen
three.

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

80 Introduction

In the first of these, Barekas and colleagues discuss
experiences with their own OpenMP compilation and
execution environment, developed for Intel SMP sys-
tems. The environment includes a resource manage-
ment system and includes features that exploit the dy-
namic execution capabilities of OpenMP: these permit
them to adapt executables to exploit whatever CPUs
the resource manager makes available to them. The
system is tested using the NAS benchmarks in both
dedicated mode and in a heavily used system where the
application must compete with many other programs
for resources.

In their work, Nikolopoulos and colleagues discuss
the possibility of extending the ways in which OpenMP
loops can be shared among the executing threads. They
consider the needs of unstructured computations, in
which the array elements that are adjacent in a mesh
may not be stored contiguously. Good cache reuse can
be obtained by creating a custom loop schedule and
reuse it in subsequent instances of the same loop or a
different loop. This ensures that threads will execute
the same iterations, enabling cache reuse. There is
some overhead to creating such schedules and a full
solution thus requires that they can be reused.

The final contribution from this community consid-
ers the automatic generation of OpenMP programs. In
their CAPO tool, Jin and colleagues have implemented
analyses and transformations that are able to identify
parallel loops even in the presence of procedure calls.
The resulting system is able to generate OpenMP code
that goes beyond the current standard in that it will par-
allelize multiple levels of a loop nest (if it has deter-

mined that they may execute in parallel), define groups
of threads and stablish precedence relations. The avail-
ability of the Nanos research compiler supporting these
extensions has enabled them to evaluate their work on
benchmarks and a complete application.

The last paper in our collection describes an effort
to parallelize a PIC code hierarchically for a cluster of
SMPs. They consider workload decomposition strate-
gies that map the computation to the SMPs and then, as
the next level of the hierarchy, decompose the compu-
tation assigned to an SMP and map its parts to the indi-
vidual CPUs within the SMP. Alternative strategies are
described, analyzed and their performance predicted.
The different versions are implemented using HPF to
realize the higher level interaction between SMPs and
OpenMP to realize the computation within each of the
SMPs. Their performance is compared with the ex-
pected performance.

There is still much to learn about OpenMP, its imple-
mentation and application on a variety of platforms,and
its use in conjunction with other programming models
on SMP clusters, as are widely deployed. Given the
variety of topics of interest, it is not an easy task to
select papers for publication in a volume such as this
one. We hope that this collection will prove to be inter-
esting and useful to readers, and that the issues raised
will stimulate many of them to further research in this
area.

Enjoy!

Eduard Ayguade and Barbara Chapman

