Development and plasticity of multisensory functions

Brigitte Röder* and Mark Wallace

*Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
\[b\]Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA

1. Introduction

Most events in the world are specified by information from multiple senses. To take advantage of this redundant and complementary sensory information, the brain has specialized circuits that integrate these cues in order to shape perception and guide behavior. Because of the importance of these processes, it should come as no surprise that the field of multisensory research is expanding at a rapid rate (Driver and Noesselt, 2008; Stein and Stanford, 2008). Although basic questions about multisensory circuits and the encoding processes within them are beginning to be revealed, substantially less is known about how multisensory functions emerge during development (Lewkowicz and Lickliter, 1994) and how mutable these processes are across the life span (Bavelier and Neville, 2002). The present special issue “Development and plasticity of multisensory functions” addresses each of these topics and provides significant insights into the state-of-the-field for multisensory research. Both review and research articles report recent results of studies using both human and animal models, and which employ either prospective or retrospective approaches. Contributions focus on the major themes of multisensory development in children, cross-modal plasticity in the blind and deaf, and recovery of multisensory function following the restoration of vision or hearing. The following narrative provides a brief synopsis of the major research highlights contained within this special issue.

*Corresponding author. E-mail: brigitte.roeder@uni-hamburg.de.
sults of experiments in dark-reared animals and which show that early sensory experience is a prerequisite for the emergence of normal function in multisensory circuits. Consistent with these findings, Putzar, Hötting and Röder show that patients born with dense bilateral cataracts that were later removed are impaired not only in face recognition but also in integrating auditory and visual speech signals.

The final theme focuses on the restoration of hearing via cochlear implantation and ensuing changes in multisensory function. The contribution of the Peterson, Pisoni and Miyamoto deals with audiovisual speech perception and discusses outcome predictors for success post-implantation. In a related contribution, Tremblay, Champoux, Leopore and Theoret indexed multisensory function in cochlear implant (CI) recipients using the McGurk effect, an audiovisual illusion created by the perceptual fusion of discordant auditory and visual speech cues. They found remarkable similarities in the fusion abilities of normal hearing individuals and “proficient” CI users, both of whom appeared to show a greater reliance on the auditory channel. In contrast, “nonproficient” CI users appeared to rely more on the visual signal. Bergeson, Houston and Miyamoto compared congenitally deaf individuals fitted with a cochlear implant within the first year of life with normal hearing infants in using an intermodal preferential looking paradigm as a measure of audiovisual speech processing. They found that deaf children with CIs gradually developed the ability to match the auditory and visual cues, suggesting a period of early plasticity in which these associations can be established. Finally, Gilley, Sharma, Mitchell and Dorman used a non-speech task (redundant stimulus paradigm) to examine multisensory development, and found that multisensory-mediated performance gains were comparable between normal hearing and early implanted patients, but not for the late implanted.

Taken together, the results reviewed and reported in this special issue highlight the recent advances in our understanding of normal human multisensory development, as well as provide a wealth of evidence for the remarkable neural and perceptual plasticity that can accompany loss of function in one sensory system. It is our hope that this issue will spur both interest and future investigation in this fertile area of research, and which will enrich our knowledge about the development and plasticity of multisensory systems.

References


