The impact of Champagne wine consumption on vascular and cognitive functions

Giulia Coronaa, Jeremy P.E. Spencera and David Vauzourb∗

aMolecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
bNorwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK

Abstract. Epidemiological evidence suggests an inverse correlation between wine consumption and the incidence of cardiovascular and neurodegenerative disorders. Although white wines are generally low in polyphenol content as compared to red wines, Champagne wine has been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. Recent evidence suggest that Champagne phenolic acids may express their beneficial properties through their interaction with cellular signaling pathways and related machinery that mediate cell function under both normal and pathological conditions. In this review we aim to provide an overview of the role that Champagne consumption plays in maintaining cardiovascular health and cognitive function. We discuss epidemiological data, human intervention study findings, as well as animal and in vitro studies in support of these actions and we consider how their biological mechanisms at the cellular level may underpin their physiological effects. Together, these data indicate that polyphenols present in Champagne may hold cardioprotective and neuroprotective potential in delaying the onset of degenerative disorders.

Keywords: Champagne wine, polyphenols, phenolic acids, CVD, memory, cognition, aging

1. Introduction

Despite the well-established harmful effects of heavy alcohol intake [1], epidemiological studies have reported that a low to moderate intake of wine (1-2 glasses per day), may reduce the risk of cardiovascular disease and cognitive impairment [2–5]. In particular, a J-shaped relationship between the amount of wine consumed and the risk of cardiovascular disease, such as hypertension, has been previously described [6–7]. These observations have been further substantiated by series of large scale, cross sectional and prospective studies, which have almost universally demonstrated a strong inverse correlation between wine consumption and the risk of cardiovascular disease [8]. In addition, incidence data from the so-called Personnes Ages Quid [2] study demonstrated that people drinking three to four glasses of wine per day had an 80% decreased incidence of dementia and Alzheimer’s disease three years later, compared to those who drank less or did not drink at all [4]. Such protection is believed to be in large part attributable to the intake of specific polyphenols present in great quantity in wine. In particular, flavonoids, a subclass of polyphenols, have been ascribed to exert anti-inflammatory properties [9] and to modulate signalling pathways that regulate nitric oxide production [10] and neuronal survival [11]. As such, there is a great interest in the potential of regular and moderate wine consumption to counteract vascular ageing and to delay the onset of neurological disorders, such as Alzheimer’s disease and dementia [12–14]. Although red wines contain high levels of flavonoids and other phenolics relative to white wines [15], Champagne wine is relatively rich in phenolic compounds (Table 1) such as hydroxybenzoic acids, hydroxycinnamic acids (and their tartaric derivative esters), phenolic alcohols and phenolic aldehydes [16, 17]. The phenolic composition varies with a wide range of factors, including species, variety, season, growing conditions, and processing practices [18]. The increased levels of phenolic compounds in Champagne wine compared to other white wines, derive
Table 1

<table>
<thead>
<tr>
<th>Phenolic compounds in Champagne wine</th>
<th>(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gallic acid</td>
<td>0.66</td>
</tr>
<tr>
<td>protocatechuic acid</td>
<td>0.50</td>
</tr>
<tr>
<td>tyrosol</td>
<td>8.46</td>
</tr>
<tr>
<td>caffeic acid</td>
<td>5.01</td>
</tr>
<tr>
<td>caftaric acid</td>
<td>1.43</td>
</tr>
<tr>
<td>total phenolics</td>
<td>16.06</td>
</tr>
</tbody>
</table>

predominantly from the two red grapes, Pinot Noir and Pinot Meunier, which are used in its production along with the white grape Chardonnay [19]. Moderate Champagne consumption has been shown to exert a number of effects in vivo, including modulation of peripheral serotonin and dopamine release [20] and to increase plasma vitamin A concentration [21]. In addition, Champagne polyphenols have been shown to protect primary neuronal cells against peroxynitrite-induced injury [16], a physiologically relevant oxidizing species which has been implicated in vascular wall pathology [22] and neurodegeneration [23]. As such, Champagne wine can deliver significant quantities of phenolic compounds capable of mediating changes in cardiovascular health and cognitive performance. In this manuscript, we will review the effects of Champagne wine on vascular health and cognitive functions and we will briefly describe their intracellular targets underlying their protective effects.

2. Champagne wine and vascular health

Cardiovascular disease (CVD), in particular coronary heart disease and stroke, is a major cause of mortality in the Western countries. Epidemiological and human intervention studies have suggested that a daily and moderate consumption of red or white wine is associated with a lower incidence of CVD [24]. Many of the effects of red wine are compatible with the action of wine-derived polyphenols on endothelium-derived nitric oxide (NO\textsuperscript*) production [25], whilst white wine effects may result from the synergistic actions of polyphenols and other phenolic constituents on LDL oxidation and platelet function [26]. Moderate red wine intake has also been associated with a reduced coronary artery disease mortality [27, 28], through its ability to improve endothelial function [29], to induce an acute increase in endothelium-dependent flow-mediated dilatation [30, 31] and to inhibit endothelin-1 synthesis [32, 33].

In particular, these biological effects have been linked to flavonoids, hydroxycinnamates and phenolic acids present in great concentration in these wines [34]. Following consumption, nanomolar quantities of flavonoids and other polyphenols enter the circulation [34, 35] where they may act to improve nitric oxide bioavailability and/or inhibit endothelin-1 (ET-1) [36, 37]. In support of this statement, the cardioprotective effects of white wines have been reported [38, 39], although they contain lower concentration of flavonoids and induce reduced vascular effects when compared to red wines [40, 41]. Moderate Champagne wine consumption has also been shown to exert a number of effects in vivo, effecting peripheral serotonin and dopamine release [20] and increasing plasma vitamin A concentration [21]. In addition, Champagne wine polyphenols have also been shown to protect cells against injury induced by peroxynitrite [16], a physiologically relevant oxidizing species which has been implicated in vascular wall pathology [22, 42].

Recently we reported that moderate consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, improved microvascular blood flow and vascular responsiveness in healthy volunteers [43]. By using Laser Doppler and iontophoresis (LDI), we demonstrated that absorbed hydroxycinnamates and their metabolites influenced vascular function (Fig. 1) by inducing an acute change in endothelium-independent vasodilatation at 4, 6 and 8 h post consumption, whilst the control did not induce any changes in vascular reactivity [43]. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase MMP-9 and a significant decrease in plasma levels of oxidising species. These biological effects were paralleled by a urinary excretion of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared to control intervention, suggesting that they may be responsible for the observed vascular activity [43]. Together, these data suggest that consumption of Champagne wine polyphenolic acids may enhance microvascular blood flow for a sustained period of time after consumption, through the maintenance of local nitric oxide levels. Altogether, these results suggest that Champagne wine has some short-term effects on the blood vessels that
Champagne wine phenolics
Decreased MMP-9
Decreased plasma oxidative status
Decreased NADPH oxidase
Increased NO availability

Microvascular blood flow
Endothelium-independent vasodilation

Enhancement of vascular function

Fig. 1. Postulated effects of Champagne wine phenolics on the cardiovascular system.

are not solely caused by its alcohol content. However, it would be premature to extrapolate the “proxy” outcomes of blood vessel dilation to clinical outcomes, such as heart disease.

3. Champagne wine and cognitive function

Polyphenol-rich foods/beverages have received much attention with regards to their neuroprotective effects [44], including a potential to protect neurons against neurotoxin-induced injury [45, 46], to suppress neuroinflammation [47], and to promote memory and learning [48–51]. Despite the well-established harmful effects of heavy alcohol intake [1], epidemiological data suggest that moderate wine consumption may reduce the incidence of age-related dementia, including Alzheimer’s disease [4, 52, 53]. As such, there is an interest in the potential of regular, moderate wine consumption to counteract normal brain ageing and to improve memory and learning, through its potential to deliver relatively high amounts of flavonoids and phenolic acids [12, 13]. Animal data support these findings and indicate that moderate consumption of red wine attenuates Aβ-neuropathology in a mouse model of Alzheimer’s disease [54]. In a recent rodent study we reported that Champagne wine is also capable of enhancing spatial working memory (without altering motor performance) in aged animals [55]. In contrast, moderate alcohol intake failed to induce spatial memory changes. These observations are in agreement with those observed following long-term red wine intake in a similar model of hippocampal-dependent spatial memory [56]. The effects of Champagne on spatial memory (Fig. 2) were paralleled by a number of changes in hippocampal and cortical protein expression, which may explain performance on spatial memory tasks. Targeted protein arrays indicated that Champagne induced the differential expression of a number of hippocampal and cortical proteins involved in signal transduction, neuronal plasticity, apoptosis and

Fig. 2. Postulated effects of Champagne wine phenolics on memory and cognition.
cell cycle regulation [55]. Most notably, we observed the differential modulation of a range of proteins, such as brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), p38, dystrophin, 2′, 3′-Cyclic-nucleotide 3′-phosphodiesterase (CNPase), mammalian target of rapamycin (mTOR), B-cell lymphoma2-extra large protein (Bcl-xL) in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL and CREB in response to alcohol supplementation [55].

CNPase is a myelin-associated enzyme that constitutes around 4% of total CNS myelin protein, and is thought to undergo significant age-associated changes [57], and is reduced in Alzheimer’s disease and Down’s syndrome patients [58]. Furthermore, Champagne-induced hippocampal increases in the cytoskeletal associated protein, dystrophin, may be beneficial as a lack of this protein in the hippocampus has been associated with impaired cognitive function [59], spatial memory [60] and long-term potentiation [61]. Indeed, patients lacking dystrophin in the hippocampus and neocortex (due to mutation in the dystrophin gene) display a range of cognitive deficits [62]. Interventions with the phenolic rich Champagne also led to the increased expression of a range of ‘other’ cytoskeletal proteins, including plakoglobin (γ-catenin), spectrin, calponin, cytookeratin pep4 and pep19, myosin Va and Focal Adhesion Kinase [55]. Such proteins facilitate complex neuronal network formation in the brain and operate with neuronal membrane proteins (e.g., ion channels, scaffolding proteins, and adaptor proteins) at sites of synaptic contacts to regulate synaptogenesis and coordinate synaptic strength [63, 64]. Our data therefore suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signalling and protein expression.

4. Mechanisms of action

Champagne wine consumption has been observed to improve acute vascular function [43], in a similar manner to that of red wine [65, 66]. Champagne wine and specifically its phenolic metabolites may affect vascular function by improving local nitric oxide bioavailability by two potential mechanisms. Firstly, they may increase the local half-life of NO* via reaction with reactive oxygen species, such as superoxide [67]. Secondly, phenolic metabolites, such as those excreted post champagne consumption, may mimic NADPH oxidase inhibitors [68], such as apocynin thereby reducing the cellular production of superoxide and increasing the half-life of NO*, without any change in the rate of NO* synthesis [69]. Furthermore, tyrosol, caffeic acid, and gallic acid, phenolic compounds found at relatively high concentrations in Champagne, have been shown to potentially inhibit peroxynitrite-induced cellular injury at physiologically relevant concentrations (0.1 to 10 μM) [16], whilst nanomolar levels of tyrosol, caffeic acid and p-coumaric acid protect cortical neurons against 5,6-cysteinyl-dopamine induced injury [70]. Indeed, the level of protection induced by these phenolics was equal to, if not greater than, that observed for similar concentration of the flavonoids, (+)-catechin, (−)-epicatechin and quercetin [70]. The hydroxycinnamate, caffeic acid, has also been shown to be neuroprotective, countering inflammatory injury induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by decreasing the production of a number of inflammatory cytokines, down-regulating the expression of iNOS, COX-2 and glial fibrillary acidic protein and lowering the production of NO and PGE-2 [71].

In addition, caffeic acid phenethyl ester may protect cerebellar granule neurons against glutamate-induced neuronal death via inhibition of p38 phosphorylation and caspase-3 activation [72] and significantly prevents hypoxic-ischaemic-induced neonatal rat brain damage in the cortex, hippocampus and thalamus [73]. Indeed, for any polyphenol to exert direct neuroprotective actions they must also undergo permeation of the BBB, something that has been reported for both flavonoids and hydroxycinnamates [74]. However, whilst the ability of flavonoids to cross the BBB is believed to be dependent on lipophilicity, small phenolics are thought to transverse the BBB via amino acid transporters, such as has been reported for 4-ethylcatechol [75]. Furthermore, caffeic acid shares structural similarities with L-DOPA and, as such, may undergo BBB transport via catecholamine transporter systems.

It is well reported that flavonoids may exert cellular action by interacting with the PI 3-kinase, Akt/PKB and MAP kinase signalling pathways [11]. Smaller phenolics, such as caffeic acid or tyrosol, may also participate in cellular interactions of this nature [76], or may directly react with toxic intermediates, as has
References

term effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine. Description of two o-dimethoxy derivatives of gallic acid in humans. Free

[22] van der Los B, Labrugger R, Sleeper JS, Buchsenschütz M, Kilo J, Powell JM, Palacios-Calleja M, Esmailzadeh JD, Quaesch-

ning T, Malinckrodt C, Gysy D, Ulrich V, Lüscher TF. Enhanced presynaptic formation is associated with vascular aging. Jour-

[23] Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: Biochemistry,

pathophysiology and development of therapeutics. Nature

ols synergistically inhibit oxidative stress in subjects given red and white wine: Atherosclerosis. 2006;180(1):77-83.

[27] Gronbaek M, Becker U, Johansen D, Gottschau A, Schnohr P, Hein HO, Jensen G, Sorensen TI. Type of alcohol con-

[32] Spencer JP. The impact of flavonoids on memory: Phys-

[33] Rainey-Smith S, Lonnerholm L, Babic P, Faber A, Skil-

ton R, Spencer JP, Rice-Evans C, Ratnay R, Williams RJ. Neuroprotective effects of keotropin in mouse primary neu-

[34] Vauzour D, Kyratzis G, Valdivia K, Rodriguez-Mateos A, Angeloni C, Spencer JP. Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: Impli-

[37] van Velden DP, Mannik FP, Feurie E, Rosseel M, Marais AD. The cardioprotective effect of wine on human blood chem-

[38] Xu X, Ying J, Xiao G, Adachi T, Shugar V, Luzar H, Mizzau K, Kayashita KV, Bignol D, Schoneck C, Cohen RA. Detection of sequence-specific tyrosine nitration of mangan-

[40] Spencer JP. The impact of flavonoids on memory: Phys-

[41] Rainey-Smith S, Lonnerholm L, Babic P, Faber A, Skil-

ton R, Spencer JP, Rice-Evans C, Ratnay R, Williams RJ. Neuroprotective effects of keotropin in mouse primary neu-

