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Nutritional supplementations
and administration considerations
for sarcopenia in older adults
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Abstract. Sarcopenia is a progressive degenerative disorder affecting ≥40% of older adults over the age of 70 years. It is
characterized by involuntary muscle loss leading to functional disability, weakness, and frailty in the elderly. Numerous mech-
anisms have been suggested as potential contributors to sarcopenia onset, including anorexia of aging, protein imbalances,
and oxidative stress. While consensus preventive and management approaches for sarcopenia are not yet clearly defined, it
is unquestionable that nutrition plays a critical role. This review focuses on the more widely studied, potent nutrients used to
attenuate sarcopenia: protein/amino acids, vitamin D and calcium, antioxidants and omega-3 fatty acids. In efforts to achieve
optimum delivery of these nutrients to target tissues in older adults it is important to also consider the issue of compromised
digestive system that occurs with aging, which will contribute to suboptimal nutrients absorption and utilization. Therefore,
this review aims to summarize key sarcopenia-attenuating nutrients and to distinguish for each identified nutrient whether a
dietary or a supplemental form is the most effective therapy for nutrient delivery in sarcopenic older adults.

Keywords: Sarcopenia, skeletal muscle, dietary supplements, proteins, amino acids, vitamin D, calcium, antioxidants, omega-
3 fatty acids

1. Introduction

In 1989 Irwin Rosenberg coined the term “sarcope-
nia”, which is derived from Greek roots, i.e. sarx:
flesh and penia: loss [1]. Rosenberg’s intent was to
use the term sarcopenia to provide a distinct clas-
sification for age-related muscle mass loss in order
to increase awareness of this condition’s impact on
aging [2]. Sarcopenia is a common geriatric condition
defined as an age-related involuntary loss of muscle
mass and function (strength or performance), leading
to weakness and frailty [2, 3] and greater risk of falls
and functional disability in older adults [4]. Glob-
ally, as the aging population continues to grow, the
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number of people with sarcopenia increases dramati-
cally. Although the prevalence of sarcopenia is higher
in individuals older than 60 years old, accounting for
5 to 13% of adults in this age category, it may begin as
early as the forth decade of life [5]. Worldwide, 40%
of the elderly population over the age of 70 years old
suffers from sarcopenia, representing more than 50
million people. This number is expected to rise to 500
million people by the year 2050 [6]. The health prob-
lems associated with aging cause health systems to
face mounting cost pressures and shortages of health
care providers [7]. In addition, sarcopenia is associ-
ated with major co-morbidities including obesity [8],
osteoporosis [9], metabolic syndrome [10] and type
II diabetes [11]. Thus, due to its debilitating nature
and a strong predisposition to multiple comorbidities
in the elderly population, the research in the area of
sarcopenia is expanding exponentially.
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Fig. 1. Possible Etiological Factors Associated with Sarcopenia. Sedentary life style and bed rest in older adults are the major causes of
inactivity, which leads to loss of the skeletal muscle mass and atrophy. Inadequate food intake and malnutrition result in impaired skeletal
muscle maintenance. Furthermore, mitochondrial dysfunction, insulin resistance and inflammation are regarded as common linking factors
associated with sarcopenia. Decreased level of anabolic hormones, resistance to anabolic stimulus, decreased muscle protein synthesis and
increased muscle protein degradation are among the most important etiologic factors resulting in sarcopenia in older adults. DHEA indicates
dehydroepiandrosterone; IGF-1, Insulin-like growth factor 1.

Although the etiology of sarcopenia is still not
clearly understood many investigations have high-
lighted roles of both genetic and environmental
factors in contributing to the development of this con-
dition. Current understanding of possible etiologic
factors associated with sarcopenia can be classified
as outlined in Fig. 1 [12–14]. While consensus pre-
ventive and management approaches for sarcopenia
are not yet clearly defined, it is unquestionable that
nutrition plays a critical role [15–17]. A large body
of literature supports the principal role of nutrition as
a part of life style modification in maintaining and/or
increasing muscle mass and functionality [17, 18].
However, decline in food intake as a consequence of
physiological changes or mental and physical impair-
ments in senescent population leads to malnutrition
[19]. Hence, it may be necessary to supplement older
adults with additional nutrients in order to attenuate
age-related loss in muscle mass and function result-
ing from sarcopenia [20, 21]. For instance, protein is
one of the key nutrients required to maintain adequate
muscle mass, however, in elderly subjects, both inad-
equate nutritional intake and impaired adaptation of
skeletal muscle to utilize amino acids may prevent
adequate muscle mass maintenance [22]. Currently,
nutritional guidelines for older adults recommend
getting 10–35% of daily calories from protein, which
may translate to 25–30 g of protein per meal, 3 times
per day [23]. However, despite these seemingly ade-

quate nutritional recommendations, research shows
that even in a supervised settings such as in long term
care facilities, which should allow for more adherence
to nutrition guidelines, more than 50% of older adults
are malnourished [24]. Malnourishment in older
adults is in part related to age-related impairments
in the digestive system including the impact on food
digestion and nutrient absorption capabilities. There-
fore, it appears reasonable to review the assessment of
nutrient absorption capabilities of frail older adults in
efforts to establish optimal nutritional guidelines and
route of delivery to determine the most viable form
of nutritional supplementation (dietary vs. pharma-
cological) options that would enhance the nutritional
status in elders. The aim of this paper is to review
key sarcopenia-attenuating nutrients and to distin-
guish for each identified nutrient whether a dietary
or a supplemental form is the most effective therapy
for nutrient delivery in sarcopenic older adults.

2. Impaired digestion in older adults impacts
nutrients intake – A key consideration in
prevention and management of sarcopenia

Outside the central nervous system, the gas-
trointestinal tract (GI) contains the largest number
and most complex system of neurons. The GI is
also closely associated with glandular organs (liver,
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pancreas, gall bladder and salivary glands), auto-
nomic and sensory neurons, and the vasculature.
Therefore, the integrated activity and interaction
between all of these cell types are of key importance
to proper digestion and absorption of food matter and
the subsequent nutrients. However, the physiology
of aging involves changes to GI cells and function,
potentially disturbing neuronal interaction and thus
diminishing nutritional adequacy of the diet [25]. The
impairments in the GI system in the elderly start in
the mouth. Weakening of oral muscles with aging
might diminish swallowing and chewing ability and
thus reduce adequate nutrition. In addition, loss of
teeth, ill-fitted dentures, and dry mouth further dimin-
ishes the initial step of digestion, which starts in the
mouth and requires adequate masticatory ability to
form bolus of food prior to swallowing [26]. A recent
study by Hiramatsu et al. [27] compared swallowing
and chewing ability in a group of healthy older adults
(OAs, n = 23, age∼76 y) with a group of younger
healthy adults (YAs, n = 23, age∼29 y). The results of
the study showed that pre-meal and post-meal tongue
pressures were significantly higher in YAs than in
OAs. The numbers of swallows were significantly
higher in YAs than OAs for both pre-meal (P < 0.01)
and post-meal (P < 0.001). The time interval from the
initiation to the beginning of swallow after the meal
was longer compared to before the meal (P < 0.05),
and was longer in OAs compared to YAs (P < 0.001).
These findings further confirmed that physiological
changes due to aging, such as reduced muscle tone
in the pharynx and esophagus increase the duration
of swallowing. Moreover, functions involved in bolus
formation (mastication, tongue mobility, and lip clo-
sure) seem to deteriorate with age, prolonging the
meal time and resulting in oral muscles exhaustion
and thus decreased swallowing ability [27]. Further-
more, slower gastric emptying and delayed proximal
gastric accommodation to a meal are also observed in
the elderly. These aforementioned factors contribute
to anorexia of aging, including loss of appetite and
early satiation, resulting in reduced nutrient avail-
ability in the elderly, which contributes to loss of
skeletal muscles and thus aggravating chances of
developing sarcopenia [28]. Moreover, most recent
research suggests that the skeletal muscle protein syn-
thetic response to dietary food intake is impaired in
older adults. This proposed anabolic resistance is now
regarded as a key factor in the etiology of sarcopenia
[29].

All in all, older adults seem to suffer from a number
of impairments of the GI system which interferes with

nutrients utilization and thus, along with other aging
associated impairments such as increased oxidative
stress and inflammation, prevents adequate muscle
maintenance, which results in malnutrition and sar-
copenia.

3. Nutritional supplementation in sarcopenia

3.1. Protein and amino acids

Skeletal muscles serve as the largest reservoir for
total body protein storage, comprising more than 50%
of the total body protein content [16]. Skeletal mus-
cle proteins are under a continuous cycle of synthesis
and break down, resulting in constant renewal of
muscle protein content. In younger adults there is
a balance between muscle protein synthesis (MPS)
and muscle protein degradation (MPD), which leads
to preservation of muscle mass and inhibition of lean
tissue loss. However, aging is associated with dimin-
ished muscle anabolic response to dietary proteins,
which is defined as anabolic resistance [29]. In addi-
tion, age-related adverse factors cause derangement
in the degradation-synthesis equilibrium; thus con-
tributing to sarcopenia [30]. Therefore, inadequate
intake of protein and other nutrients as a result of
decreased appetite, chewing or swallowing difficul-
ties, decreased gastric emptying, physical and mental
impairments, medications-nutrient interactions, pres-
ence of multiple diseases, and altered hormonal
responses can contribute to impaired synthesis of
proteins in skeletal muscles [19]. However, recent
research indicates that ingestion of 35 g of whey pro-
tein shows an increased rate of de novo muscle protein
synthesis when compared to ingestion of 10–20 g
of whey protein. Therefore, it appears that anabolic
resistance can be partially overcome by increasing
protein intake in older adults to higher than 10–35%
of the acceptable macronutrient distribution range
(AMDR) [29].

Several studies have been conducted to date to
examine the impact of supplementation of proteins
and/or different amino acid mixtures on muscle mass
and function (Table 1). Research shows that ingestion
of a high-protein containing diet will trigger skeletal
MPS, which will be maintained for up to 5 hours fol-
lowing ingestion [31]. There is an inverse relationship
between protein intake and appendicular lean mass
loss, i.e. for an older adult being in the highest quintile
of protein intake (18.2% total energy, 1.1 g/kg/day) is
associated with 39% less appendicular muscle mass
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loss (P < 0.05) [32]. Researchers have also shown that
different sources of protein have different effects on
MPS. Wherein ingestion of high quality proteins such
as whey and casein have been shown to be more effec-
tive in mitigating muscle mass loss in sarcopenia
than soy proteins [33, 34]. In addition, some stud-
ies show that protein intake, when combined with
physical activity such as resistance exercise, is capa-
ble of reducing muscle mass loss in the elderly more
efficiently than merely protein ingestion [35]. Over-
all, high quality proteins and amino acids have been
shown to be effective in attenuating age-related mus-
cle mass loss. Nevertheless dosages, combination,
timing and duration of protein or amino acid sup-
plements, and their association with exercise, are all
factors requiring further studies in order to establish
optimal therapeutic strategies to attenuate age-related
muscle loss and decrease the number of older adults
suffering from sarcopenia.

Amino acids (AA) are organic compounds com-
posed of two functional groups: amine (-NH2) and
carboxylic acid (-COOH) [36]. They are building
blocks of proteins, as well as energy substrates
and signalling molecules in protein metabolism
[37]. Research shows that supplementation with
8–15 g/day of essential amino acids (EAA) results in
improved lean body mass (LBM) and muscle strength
[16, 20]. Among the various EAA, the branched-
chain AA (BCAA), especially leucine, have been
shown to have regulatory roles in enhancing MPS
and reducing MPD [38, 39]. It has been said that
more than 20% of the total protein content of the
diet is comprised of BCAA [40]. Since the liver
does not possess any aminotransferase enzyme for
metabolizing BCAA, these AA reach the blood and
then skeletal muscles almost with the same concen-
trations that they appeared in the diet [41]. Thus,
supplementation with BCAA, especially leucine, can
potentially be of great importance to skeletal MPS
[42, 43]. Leucine is capable of inducing protein
synthesis via the activation of mammalian target of
rapamycin (mTOR) complex-1 signalling pathway,
which plays a central role in cell growth, cell-
survival and protein synthesis. The mTOR pathway
is a conserved serine/threonine kinase involved in
many signal transduction pathways within the cell,
regulating cell growth and homeostasis [44]. The
mTOR system is categorized as two protein com-
plexes: mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2). Maintaining and controlling
protein synthesis are the primary roles of mTORC1,
whereas the role of mTORC2 is less clearly perceived

[45]. While activation of mTORC1 will further phos-
phorylates/activates p70 ribosomal S6 protein kinase
(p70S6K) and protein synthesis, its inhibition acti-
vates autophagy machinery to eliminate damaged
components and save energy for stressful condi-
tions [46]. Thus, due to the central role of mTOR
in several signaling pathways, it is implicated in the
pathogenesis of diseases in which growth and home-
ostasis are compromised, e.g. cancer [47], aging [48],
and sarcopenia [49]. The activation of p70S6K and
mTORC1 is also essential for skeletal muscle hyper-
trophy as it is required for the initiation of a series
of mRNA translation, which encodes protein neces-
sary for protein synthesis (Fig. 2). Moreover, mTOR
is implicated in protein synthesis and degradation in
myopathies [50, 51]. Increased activation of mTOR
and the subsequent hyperphosphorylation of p70S6K
have been observed in aged mice [52], suggesting a
role for mTOR in the pathogenesis of sarcopenia and
other age-related muscle abnormalities.

Research shows that both acute and chronic sup-
plementation with EAA in the amount of 10 g and in
combination with 3.5 g leucine are capable of enhanc-
ing MPS [42, 53]. Since the leucine content of dietary
proteins is a determinant of post-prandial MPS, inves-
tigating the effect of various protein sources on MPS
in regard to their leucine content is of great interest
in research. Luiking et al. [34] investigated whether
there was a difference in the effects of a supplement
high in whey protein and leucine or a dairy product-
containing supplement on skeletal MPS in healthy
older adults. The results of this study revealed that the
experimental group, who received 20 g whey protein
and 3 g leucine-enriched product had a higher pro-
tein fractional synthesis rate (FSR) compared with the
control group who ingested 6 g milk protein with the
same calorie content [34]. Similarly, the effects of soy
and whey protein, combined with resistance exercise,
on the levels of p70S6K phosphorylation were com-
pared in thirteen healthy older men [33]. Although at
2 hours post exercise the levels of phosphorylated
p70S6K increased in both whey and soy supple-
mented groups compared with baseline (P < 0.001),
the level of phosphorylated p70S6K remained ele-
vated for 4 hours post exercise (P < 0.001) only in
the 30 g whey protein supplemented group. These
results showed that the effect of whey protein on
protein synthesis signalling pathways in skeletal mus-
cle was more prolonged than soy protein, possibly
due to higher BCAA content of whey protein and
thus higher stimulation of mTOR signaling pathway.
However, more research is needed to better under-
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Fig. 2. Simplified view of mammalian target of rapamycin (mTOR) signalling pathway and role of amino acids and leucine in skeletal muscles
protein synthesis. mTOR is a conserved serine/threonine kinase involved in many signal transduction pathways within the body, regulating
cell growth and homeostasis. The mTOR pathway is activated by insulin, growth factors and amino acids. Activation of mTOR results in the
phosphorylation of specific proteins that ultimately phosphorylate and activate p70 ribosomal S6 protein kinase (p70S6K), which triggers a
cascade of responses that subsequently results in protein biosynthesis. 5’ adenosine monophosphate-activated protein kinase (AMPK) is also a
key regulator of cellular energy homeostasis. AMPK can sense the cellular energy level and down-regulate the cellular pathways that consume
ATP in case of decreased cell energy content. Eukaryotic elongation factor 2 (eEF2) in its active form results in activation of overall translation
elongation in protein synthesis. PIP2 indicates phosphatidylinositol 4,5 bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate;
PTEN, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase; PDK1, 3-phosphoinositide dependent protein kinase-1; eEF2K, eukaryotic
elongation factor 2 kinase; p, phosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate.

stand why different proteins have different effects on
mTOR pathway stimulation and the subsequent MPS.

Aleman-Mateo et al. [54] conducted a study with
40 subjects, including men and women over 60
years of age with sarcopenia. They examined the
impact of a diet rich in protein from ricotta cheese
(15.7 g protein /day, including EAA at 8.6 g/day) on
total appendicular skeletal muscle mass and muscle
strength. Unfortunately, the results of the study did
not reach statistical significance. In fact, diet rich
in ricotta cheese did not have any impact on body
composition and strength in elderly with sarcopenia.
The authors suggested that perhaps higher amount of
dietary protein is needed to elucidate an increase in

muscle mass in older adults, i.e. 2 g/kg/day, while this
study only provided 0.5 g/kg/day. Another impor-
tant factor to consider is that this study used total
lean body mass increase as an indicator of effective-
ness of protein supplementation. Additional analysis
on hand grip strength provided a clear tendency
toward significance in the ricotta supplemented group
(P = 0.06), indicating increased muscle strength. As a
final remark, the authors found that some participants
experienced difficulty consuming the entire portion
of 210 g of ricotta cheese due to an early satiety. This
finding is consistent with previous findings on early
satiety in the elderly, especially following a high pro-
tein meal [28]. The results of these studies suggest
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Fig. 3. Muscle-bone cross-talk and vitamin D receptor. Sclerostin is secreted by mature osteocytes in response to vitamin D activation, and
it increases bone mass, which in response has a positive effect on certain muscles; however the mechanism is still unknown. Osteocalcin is
produced by osteoblasts and regulated by vitamin D. Osteocalcin has a potential effects in muscles by altering mitochondrial function and
insulin sensitivity. FGF23 (fibroblast growth factor 23) is a vitamin D responsive hormone produced by bones and has positive effects on
cardiac and smooth muscles. Vitamin D Receptor (VDR) can be found in both skeletal and muscle cells, and is activated by 1, 25 Vitamin
D (1,25 D) and contributes to initiation of protein synthesis through bone-muscle cross-talk mechanism [57, 133].

that older adults’ digestive capabilities should be
taken into account prior to prescribing protein supple-
mentation. Moreover, due to substantial differences
between younger adults and older adults’ digestive
systems, additional research is required in order to
select the most efficient way for AA delivery to skele-
tal tissue in order to achieve the highest impact on
MPS. For instance, Milan et al. [55] compared post-
prandial plasma AA concentrations between a group
of older adults (n = 15, 60–75 y) and younger adults
(n = 15, 20–25 y) following a high protein mixed meal
(49.8 g protein). The results of the study showed that
older adult digest and absorb protein within a mixed
meal slower that younger adults. The authors sug-
gested that delay in AA absorption may delay or
suppress protein synthesis in senescent muscle [55].
Therefore, the type of protein and the context of the
meal have to be modified to fit the needs of declining

digestive functions of older adults. Hence, provid-
ing proteins and EAA, especially leucine, in forms
of pharmacological supplements may appear as the
most feasible way to achieve optimum protein/AA
intake in older adults.

The impact of leucine on protein synthesis has been
shown in a large body of literature (e.g. Table 1); how-
ever, the effective dose by which leucine exerts its role
on protein synthesis in the elderly is still not clearly
understood. Animal studies indicate that increasing
the BCAA-rich whey protein content of the diet
from 12% to 18% (12% whey = 13.8 g leucine/kg
diet; 18% whey = 21.1 g leucine/kg diet) results in
attenuating the LBM loss in aged rats. In regards
to human studies, most recent research show that
administration of ≥30–40 g of whey protein to older
adults results in direct stimulation of protein synthesis
through mTOR signaling pathway [49]. Although



F. Farshidfar et al. / Nutrition and sarcopenia 157

these studies (Table 1) provide valuable sources of
information on the impacts and effective dose of whey
and leucine supplementation in attenuating muscle
mass and function losses in the elderly, there is still
no agreement in the literature on the optimum level of
whey and leucine intakes for treatment of sarcopenia.

In summary, supplementations with protein and
AA, especially leucine, are promising strategies
targeted at increasing MPS and attenuating age-
related sarcopenia. However the exact effective and
safe dosage is still unclear, but current suggestions
include: ≥30 g whey protein/day, BCAA-rich pro-
tein at 2 g/kg/day, or to include whey protein as 18%
of total daily caloric intake (Table 1). In addition
to currently obscure protein/AA dosages, the exact
route of delivery is questionable given the physiolog-
ical impairments in the digestive system that occur
with aging, which can significantly impact an individ-
ual’s nutritional status. Therefore, supplementation
with high quality protein in its elemental form of AA
(especially BCAA) may be a more effective way for
optimum MPS stimulation as it by-passes digestive
step that appears to be problematic for older adults.
Furthermore, on a cautionary note, although higher
protein consumption is recommended to attenuate
muscle mass loss in sarcopenia, potential adverse
effects associated with higher than 0.8 mg/kg daily
protein intake should not be overlooked. For instance,
bone disorders and imbalance in calcium homeosta-
sis, renal dysfunction, predisposition to cancer and
coronary artery disease are some of the adverse
effects mentioned in the literature as consequences of
higher than RDA protein consumption [56]. Future
studies looking more in depth in the proper dose
and timing of administration of protein and AA are
required to establish a practical guideline for preven-
tion and management of sarcopenia in the elderly.

3.2. Vitamin D and calcium

Increase rates of longevity and adiposity in the
general population result in an increased number of
musculoskeletal system disorders such as sarcope-
nia and osteoporosis; both contributing to frailty and
increased risk of fractures due to falls in older adults.
It is important to mention both muscle and bone
diseases as they appear to be linked in both direct
function and tissue cross-talk (Fig. 3). Skeletal mus-
cles and bone mass are constantly involved in each
other’s regulatory pathways, resulting in mutual co-
dependency [57, 58]. One of these mutual regulators

appears to be vitamin D. Research findings showed
that vitamin D-responsive hormones that are pro-
duced by bone tissue are activated in the presence of
vitamin D and in return have positive effects on MPS.
Similar association is seen with vitamin D-responsive
factors produced by muscle cells, resulting in positive
effect on bone tissue [59]. Therefore, both muscle and
bone strengths have to be considered in order to pro-
vide optimum treatment and preventative measures
for older adults with sarcopenia.

Following the discovery of vitamin D receptors
in human muscle cells, it has been identified that
vitamin D may induce MPS through direct initiation
of transcription and indirect muscle-bone cross talk
mechanism [59]. In addition to anabolic effects on
muscles, vitamin D may also have a role in moderat-
ing inflammation in skeletal muscles. Choi et al. [60]
found that vitamin D supplementation in exercised
rats decreased inflammatory cytokines, interleukin-
6 (IL-6) and tumor necrosis factor-alpha (TNF-�)
genes expressions, and increased vitamin D receptor
protein expression in skeletal muscles [60]. A num-
ber of studies have concluded that supplementation
with vitamin D might improve muscles function and
bone strength, thus preventing sarcopenia, frailty, and
decreased the risk of falls in the elderly (Table 2). For
instance, Mastaglia et al. [61] demonstrated that the
strength and function of lower extremities were bet-
ter preserved with serum hydroxyl-vitamin D level
≥20 ng/ml. Indeed, lower vitamin D level in the
blood was found to be associated with frailty in older
adults [62]. A meta-analysis by Bischoff-Ferrari et
al. [63] indicated that vitamin D supplementation at
a dose of 700–1000 mg/day in older adults was asso-
ciated with 19% reduced risk of falling. In addition,
the results from the Fourth Korea National Health
and Nutrition Examination Survey (KNHANES IV)
in 2009 demonstrated that the serum level of 25-
hydroxyvitamin D had positive correlations with total
and appendicular lean mass (R = 0.142 and R = 0.157,
respectively) and negative correlations with total fat
mass and appendicular fat mass (R = –0.188 and
R = –0.197, respectively) (P < 0.001 for all). In fact,
sarcopenia in older Koreans was inversely associated
with serum vitamin D concentrations [64]. However,
further gender-specific analysis of the KNHANES IV
data revealed that blood vitamin D levels tended to
have a negative association with sarcopenia only in
women 50 years of age or older [65]. In contrast,
Dupuy et al. [66] conducted a cross-sectional study
to determine whether muscle mass was influenced by
vitamin D intakes in 1989 community-dwelling older
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French women (∼80 y). Low intake of vitamin D was
estimated based on self-reported data and defined at
<70 �g/week based on recommended dietary intake
(RDI) of vitamin D. Although in this study low mus-
cle mass revealed a significant, positive correlation
with obesity, malnutrition and decreased handgrip
strength, no association was observed between mus-
cle mass and dietary vitamin D intake [66].

In addition to vitamin D status and intake, the effect
of calcium intake on body composition in older adults
has been reported in the literature. Data from the
KNHANES IV study indicated that the daily calcium
intake had a positive (rho = 0.281) (all P < 0.001) and
negative correlation (rho = –0.140, P < 0.001) with
skeletal muscle mass and total body fat mass, respec-
tively. Sarcopenic older adults had a lower daily
consumption of calcium (≤278 mg per day) in com-
parison with participants without sarcopenia [67].
Furthermore, calcium status is influenced by blood
vitamin D levels, since 1,25-dihydroxyvitamin D, the
active form of vitamin D in the body, binds to vita-
min D receptors in the gut and stimulates production
of proteins involved in the transluminal transport of
calcium in the intestine [68].

In summary, although, the mechanism of muscle-
bone cross-talk is poorly understood, its existence
has been prior suspected. Evidences indicate that
sarcopenia might be associated with vitamin D
deficiency, however this is all based primarily on
observational studies as reviewed above and sum-
marized in Table 2. Unfortunately, to date there has
been no clear randomized clinical trials showing the
benefits of vitamin D for sarcopenia. Nevertheless,
supplementation might be effective for protection
against loss of musculoskeletal unit and the subse-
quent complications, such as falls, which lead to
immobility and further decrease in lean muscles mass
(i.e. muscle atrophy due to immobility). Evidence
suggests that 700–800 international units (IU) of
vitamin D in combination with calcium supplement
reduces the risk of non-vertebral and hip fractures by
approximately 13–26% [69–71]. Since natural vita-
min D requires sun exposure for activation, which
may not be feasible in many situations, thus pharma-
cological supplementation with its active form may
be the most efficient way to achieve optimum vitamin
D status for most elders.

3.3. Antioxidants

Oxidative stress is a condition resulting from an
imbalance between increased free radical production

and decreased cell protection mechanism; known as
antioxidative capacity. Since free radicals are unsta-
ble and have high chemical reactivity, they can wreak
havoc on a wide spectrum of biomolecules includ-
ing DNA, lipids and proteins. Amongst the various
free radicals, reactive oxygen species (ROS), which
are derived from oxygen, are of utmost importance
in biological systems because of their major pro-
duction site in the cells, i.e. mitochondria [72]. As
cellular respiration organelles, mitochondria con-
sume approximately 90% of the oxygen inside the
cells and overproduction of ROS can have destruc-
tive effects on mitochondria and cells resulting in
mitochondrial mediated apoptosis or cell death [73].
Indeed, the impact of free radicals on aging process
was described as early as 1950’s by Denham Har-
man [74] where he enunciated that intracellularly
produced free radicals are capable of damaging cell
components such as DNA and RNA, leading to aging
and aging-associated degenerative alterations [74].
For more information on the generation of ROS and
counteraction of cells to oxidative stress during aging
the readers are referred to comprehensive literature
review such as by Finkel et al. [75].

Among various proposed mechanisms in sar-
copenia, impairment in mitochondria and increased
oxidative stress are strongly supported by the lit-
erature [76–79]. Aging results in reduced content
and bioenergetics of mitochondria within skeletal
muscle and consequently, oxidative phosphorylation
capacity will be diminished in myocytes [76, 78].
Decreased functionality of mitochondria, not only
leads to less adenosine triphosphate (ATP) produc-
tion, but also contributes to greater production and
release of ROS from mitochondria [76]. ROS are a
major inducer of programmed cell death, apoptosis,
and autophagy, resulting in myocyte loss and/or atro-
phy [76]. Sullivan-Gunn et al. [80] assigned 58 mice
into four age categories; 6, 12, 18 and 24 months
of age and fed them with standard chow and water
under controlled conditions. At 14 months of age,
representing middle age, the survival rate of these
mice started to drop, whereby 60% of 18-month old
animals survived, and half of them died in the 24
months of age group. In addition, skeletal muscle
mass loss or sarcopenia was observed at 18 months
of age. These mice also showed an increase in ROS
levels and a decrease in antioxidant enzymes levels in
skeletal muscle, indicating a possible role of oxidative
damage in sarcopenia [80]. Cross sectional stud-
ies in human subjects also demonstrated that older
adults with sarcopenia consume below the RDA for
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antioxidant nutrients compared to those without sar-
copenia [81]. Hence, strategies aiming at reduction of
ROS production or detoxifying them may contribute
to reversing the devastating consequences of these
compounds.

Some researches in the field of sarcopenia have
been focused on oxidative stress and treatment strate-
gies using antioxidants. Marzani et al. [82] conducted
a study to assess the impact of an antioxidant mix-
ture consisting of rutin, vitamin E, vitamin A, zinc
and selenium on anabolic response of aged mus-
cle to stimulatory effect of leucine supplementation.
In this study adult (8 months, n = 32) and old (20
months, n = 33) male rats were each assigned to one
of two experimental protocols to receive either a con-
trol diet supplemented (Aox+) or non-supplemented
(Aox-) with the antioxidant mixture. After 7 weeks,
fast-twitch epitrochlearis muscles were dissected and
further incubated in incremental concentrations of
leuicne. In Aox- groups, addition of leucine increased
protein synthesis in adult rats and to a lesser extent
in old rats. No significant alteration was observed in
adult rats supplemented with the antioxidants; how-
ever, MPS response to leucine was enhanced as a
result of antioxidant supplementation in old rats. In
this situation, improvement in protein synthesis in old
rats was not mediated through activation of p70S6K,
but thought to be intervened by a reduction in inflam-
matory markers, such as plasma �2 macroglobulin,
which showed a decrease in old rats after antioxi-
dant supplementation [82]. Although, the effect of
antioxidants on MPS (activation of elements of pro-
tein synthesis pathway) and inflammatory biomarkers
were assessed in this study, the exact mechanism
by which antioxidants induce their impacts on the
muscle cells was not investigated. In addition, alter-
ation in muscle mass and/or function in aging due
to antioxidant supplementation are also areas that
require further examination.

Animal and human bodies possess endogenous
antioxidant compounds and enzymes, e.g. glu-
tathione, superoxide dismutase and catalase, to
defend the body against oxidative attack [83]. In
addition, antioxidative capacity of various exoge-
nous dietary sources such as vitamin C [84], vitamin
E [85], carotenoids [86] and polyphenols [87] have
long been reviewed in the literature showing that they
can compensate the body’s antioxidant requirements
[88, 89]. The ability of antioxidants to scavenge
ROS prevents further damage to the cell structures
notably mitochondria [90]. Ryan et al. [21] supple-
mented 28 aged rats either with or without vitamin C

and E and demonstrated that these vitamins lowered
the indices of aging-associated oxidative damage.
Similarly, Bobeuf and colleagues [91] demonstrated
that supplementation of older rats with vitamin C
(l-ascorbic acid, 2% by weight) and E (dl-alpha-
tocopheryl acetate, 30000 mg/kg) combined with
resistance exercise for 4.5 weeks increased appen-
dicular fat free mass after 6 months of study period;
however these researchers could not detect any sig-
nificant change in oxidative damage parameters.

Carotenoids; organic pigments abundantly found
in plants and vegetables, are supposed to have an
inverse association with muscle dysfunction and dis-
ability in older adults [92]. Follow-up study of 628
elderly men and women aged 65 and older for
6 years revealed that lower plasma concentrations
of carotenoids were accompanied by greater risk
of poor hip, knee and grip muscle strength [92].
Similar results regarding the relationship between
plasma carotenoid levels and hip, knee and grip
strengths were also attained from elderly women
who participated in a cross-sectional study; in fact,
higher carotenoids levels were correlated with better
strength measures [93]. These observational studies
suggest that carotenoids may have protective effect
against aging-associated muscle function loss. How-
ever, further clinical controlled studies are required
to demonstrate the beneficial roles of carotenoids in
attenuating sarcopenia in older adults.

In addition to carotenoids, vitamins C and E, the
antioxidant effect of other dietary nutrients such as
resveratrol, has been investigated in the literature.
Resveratrol is a member of the polyphenolic com-
pounds, which are known for their antioxidative and
anti-inflammatory properties. Skin of red grapes is
the major natural source of resveratrol, but it can
also be found in peanuts and berries [94]. Resver-
atrol is present in plants and fruits in a small amount,
therefore in order to reach the pharmacological doses
effective for health related conditions, resveratrol is
extracted from Polygonum cuspidatum (knotweed) as
a nutritional supplement [95]. Investigators claimed
that polyphenols and resveratrol have beneficial pre-
ventive and therapeutic effects on a number of health
conditions such as obesity, diabetes, hypercholes-
terolemia, cancer, Alzheimer’s disease and aging
associated disorders [94]. In an in vitro study with
C2C12 myoblast cells, resveratrol hindered increased
production of ROS induced by transforming growth
factor-�1 (TGF-�1), a cytokine promoting fibrosis
in muscles [96]. Other in vitro studies also demon-
strated that resveratrol is capable of reversing muscle
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mass loss induced by inflammation, mainly the
pro-inflammatory cytokine TNF-�, through regula-
tion of Akt/mTOR/FoxO1 signaling pathway, which
enhances MPS required for muscle structure and
function. Akt (protein kinase B) is a kinase capa-
ble of controlling both MPS, via phosphorylating
and activating of mTOR, and MPD, by inactivat-
ing of transcription factor Forkhead Box O1 [97].
In addition, intra-gastric administration of resvera-
trol with a dose of 100 mg/kg/day to 8 month-old rats
for 12 weeks decreased ROS level in subsarcolem-
mal and intermyofibrillar mitochondria and increased
antioxidative capacity as measured by total super-
oxide dismutase (SOD), glutathione peroxidase and
catalase enzymes activity levels in tibialis anterior
muscle [98]. Nevertheless, there are some discrepan-
cies in the literature regarding antioxidative effect of
resveratrol. When Barger et al. [99] supplemented 14
month-old male mice with 4.9 mg/kg/day for approx-
imately 16 months, markers of oxidative damage
to DNA and RNA [8-hydroxy-29-deoxyguanosine
(8-OHdG) and 8-hydroxyguanosine (8-OHG)] and
the marker of lipid peroxidation (F2-isoprostanes)
in soleus and extensor digitorum longus muscles did
not change significantly as a consequence of resver-
atrol supplementation [99]. Although the duration
of this study was long enough to give rise to any
beneficial effects of resveratrol, the provided dosage
might not be sufficient to initiate the antioxidative
impacts of resveratrol. Ingestion of higher doses,
12.5 mg/kg/day, of resveratrol for 21 days in older rats
(34 month-old), who received hind limb suspension
for 14 days during the course of the study, was shown
to affect oxidative stress markers by increasing cata-
lase and manganese SOD (MnSOD) activities and
decreasing lipid peroxidation and hydrogen peroxide
contents in gastrocnemius muscle [100]. Although
Jackson et al. [100] examined the gastrocnemius
muscle as a whole, without having concern about
different fiber types, a later study by the same
research group [101] demonstrated that slow-twitch,
gycolytic gastrocnemius muscle fibers are more
responsive to resveratrol than fast-twitch, oxidative
fibers in gastrocnemius muscle. Supplementing old
(27 month-old) male rats with 50 mg/kg/day resvera-
trol for 6 weeks enhanced sirtuin 1 (SIRT1), a histone
residue deacetylase which is supposed to be associ-
ated with increased longevity and aging suppression
[102], in slow-twitch gastrocnemius muscle fibers.
However, the resveratrol supplementation regimen
did not have any impact on oxidative stress markers
and muscle mass [101]. Nonetheless, the increase in

SIRT1 activity was also shown in a study conducted
by Zheng et al. [98] that has been discussed earlier in
this section.

To assess the effect of resveratrol in aging-
associated muscle mass loss, Bennett et al. [106]
applied hind limb suspension in combination with
125 mg/kg/day resveratrol supplementation for 14
days in 32 month-old male aged rats. Although
resveratrol was not effective in preventing the plan-
taris muscle mass loss during loading period, it
improved type II, fast-twitch muscle fiber size and
muscle mass during the recovery period. Wang et
al. [103] used an interleukin-10 (IL-10), an anti-
inflammatory cytokine, knockout mouse model to
investigate the effect of the grape seed extract (con-
sisting of >95% flavonols), which is a by-product of
wineries and grape juice producing industries. This
mouse model exhibit chronic inflammation, accel-
erated muscle mass loss and frailty. Supplementing
these animals with resveratrol for 12 weeks ame-
liorated tibialis anterior muscle mass loss, reduced
protein degradation and rectified the inhibition of
anabolic signaling pathway [103]. Although resver-
atrol revealed a protective effect against oxidative
damage by reducing autophagy and apoptosis, some
researchers claim that it was not able to attenuate mus-
cle mass loss in sarcopenia [107]. In fact 10-month
resveratrol supplementation of middle-aged mice was
effective in preserving the fast-twitch muscle fiber
function and age related oxidative stress, however it
could not prevent muscle mass loss in these animals
[107]. Although the result of this study in regard to
the effect of resveratrol on muscle mass was in agree-
ment with Joseph et al. [101], different fiber types
were responsive to the beneficial effects of resveratrol
supplementation in these studies. Therefore, it is not
clear whether the effect of resveratrol is fiber-specific
and if so, which fiber types are more responsive to
this treatment. More research is required to elucidate
the mechanism and role of resveratrol in attenuating
muscle mass and function loss in elderly.

Overall, antioxidants provide a promising venue
for combating muscle mass loss in sarcopenia, since
increased oxidative stress is an inseparable part of
this disorder and many other aging-associated con-
ditions. Antioxidants are found in plenty of foods,
primarily in vegetables and fruits. It is well known
that the bioavailability of antioxidants from veg-
etable and fruit sources is optimum to maintain
defenses against oxidative stress in healthy young
people. As stated earlier in this review, a number
of digestive misalignments prevent older adults from
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optimal nutrient utilization. However, in the case
of antioxidants, it appears that older adults bene-
fit from dietary vegetable and fruit consumptions as
much as do younger adults. For instance, Kim, et al.
[4] performed a cross-sectional examination of the
KNHANES IV study, comprised of 823 men and
1,089 community-dwelling women aged ≥65 years,
to assess the relationships between vegetables and
fruits consumptions and the effects on sarcopenia.
The results of the study showed that after adjustment
for all covariates, higher frequency of vegetables,
fruits and combined fruits and vegetables consump-
tion was accompanied by lower risk of sarcopenia
among older men. For women, the risk of sarcopenia
decreased as the number of servings of fruit per day
increased.

Although, without a doubt, dietary antioxidant
intake is superior to synthetic antioxidants, some
older adults might be forced to resort to synthetic
supplementation. A number of studies indicated
that there is a difference in bioavailability between
different synthetic antioxidants. For instance, phar-
macokinetic studies indicate that carotenoids are less
bioavailable in the form of a supplement, while
synthetic and food-derived vitamin C is relatively
comparable [108, 109]. Therefore, unless indicated
otherwise, it appears prudent to use dietary therapy
rich in vegetables and fruits in efforts to combat
sarcopenia-induced oxidative stress. However, given
the anorexia of aging, more research is needed to
identify if some older adults might be experiencing
significant difficulty consuming sufficient amounts of
vegetables and fruits to obtain their beneficial health
effects. Also, it will be prudent to identify if prepara-
tory techniques such as mincing/puree could help
to increase vegetables and fruit consumption in the
elderly. Furthermore, more research is required to
determine if supplementation with antioxidants could
be beneficial adjuvant therapy to AA and proteins for
enhancing or maintaining muscle mass and function
in aging populations.

3.4. Omega-3 fatty acids

The etiology of sarcopenia is still not clearly
understood, however a number of factors have been
proposed as potential contributors to sarcopenia. One
of these possible mechanisms is the increased cir-
culating cytokines and pro-inflammatory markers
(Fig. 1), which are associated with the aging pro-
cess [16, 110, 111]. Dysregulation of inflammatory

pathways during aging is suggested to play a major
role in the pathogenesis of various age-related dis-
orders such as cardiovascular events, Alzheimer’s
disease and sarcopenia. In fact, elevated levels of
pro-inflammatory cytokines like IL-6, interleukin-1�
(IL-1�) and TNF-�, as well as decreased anti-
inflammatory cytokines, as a consequence of aging
initiates a cascade of events, ultimately resulting in
impaired response of skeletal muscle to anabolic
signals [110]. In younger muscles, anabolic stimuli
affects MPS, outpacing it from MPD and subse-
quently resulting in increased muscle mass [112].
Nevertheless, anabolic resistance in aged muscle
deranges this equilibrium between MPS and MPD,
which leads to gradual loss of muscle mass [112]. It
has been shown that the presence of even low-grade
inflammation in aged rats results in irresponsiveness
of post-prandial MPS to nutritional stimuli, whereas
control non-inflamed counterpart rats have increased
MPS after food intake [113]. In addition, long-
term prevention of inflammation with a non-steroidal
anti-inflammatory drug (e.g., ibuprofen) reduces the
inflammatory biomarkers and cytokines levels such
as fibrinogen, �2-macroglobuline, IL-6 and IL-1�
leading to enhanced MPS and diminished MPD in
aged rats [114].

Omega-3 fatty acids are polyunsaturated fatty
acids (PUFA) that are essential nutrients with anti-
inflammatory properties. Oily fish like salmon is a
common source of omega-3 fatty acids, while plant
oils such as canola and flaxseed oil also contain
omega-3 fatty acids [115]. A large body of evi-
dence supports the beneficial effects of these omega-3
fatty acids in various clinical conditions including
cancers, cardiovascular diseases, inflammatory disor-
ders and cognitive impairments [116]. Omega-3 fatty
acids exert their anti-inflammatory activity through
several mechanisms including reduced leukocyte
chemotaxis, decreased production of eicosanoids
from arachidonic acid, and reduced T-cell reactiv-
ity [116]. Therefore, it has been speculated that
older adults with sarcopenia would also benefit from
more omega-3 fatty acids consumption, since inflam-
mation is one of the underlying pathophysiological
events during the disease process [15, 111]. Further-
more, it has been shown that the anabolic response
of skeletal muscle to AA administration may be
enhanced by combining with omega-3 fatty acids
supplementation [15, 117]. Smith et al. [15] con-
ducted a study with 16 healthy older adults, aged
65 years or more, to investigate whether supplemen-
tation with omega-3 fatty acids for 8 weeks had
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any impact on the rate of MPS and anabolic sig-
naling. In this randomized controlled trial, subjects
were assigned to either omega-3 fatty acid or corn
oil (control) group. The measurements were done at
basal, post-absorptive conditions and after admin-
istration of hyperaminoacidemic-hyperinsulinemic
clamp, before and after supplementation with omega-
3 fatty acids and corn oil. The results of this study
revealed that hyperaminoacidemic-hyperinsulinemic
clamp induced a rise in MPS in both groups
(P < 0.01); however only omega-3 fatty acids could
augment this increase (P = 0.01). Similar positive
effects on muscle mTORC1 and p70S6K activity,
which are involved in anabolic signaling pathways
in muscles, were also observed in the omega-3 fatty
acids supplemented group (P = 0.07 and P < 0.05,
respectively). Overall, the data from this trial sug-
gested a possible role of omega-3 fatty acids in
overcoming the metabolic resistance in skeletal mus-
cle and attenuating muscle mass loss in older adults
[15]. The effect of omega-3 fatty acids on muscles
has also been studied beyond the scope of increas-
ing MPS and muscle mass. In fact, consumptions
of omega-3 fatty acids have been shown to improve
muscle function by enhancing muscle strength and
performance [117–120]. Another study by Smith et
al. [117] demonstrated that supplementation with
omega-3 fatty acids [four 1 g pills per day, providing
1.86 g eicosapentaenoic acid (EPA; 20:5n–3)/day and
1.5 g docosahexaenoic acid (DHA; 22:6n–3)/day] for
6 months not only increases thigh muscle volume, but
also enhances hand grip strength and average isoki-
netic power [117]. Similarly, dietary assessments of
nearly 3000 elderly men and women have shown pos-
itive associations between fatty fish consumption and
grip strength in both genders [118].

As discussed earlier, one of the hypothesis behind
the beneficial effects of omega-3 fatty acids on
improvement of muscle mass (size) and function is
primarily thought to be due to reduced inflamma-
tory processes and its associated biomarkers [110].
To test this theory Cornish et al. [111] recruited
51 older adults in a randomized double-blind trial.
Subjects were almost equally assigned to one of
two groups to receive either 14 g alpha-linolenic
acid/day (ALA, an 18 carbon essential omega-3
fatty acid, i.e., 18:3n–3) through 30 ml of flax seed
oil or iso-caloric corn oil (placebo). At the same
time, both groups were completing a resistance-
training program. After 12 weeks, male subjects in the
ALA-supplemented group demonstrated a significant
reduction in blood concentration of IL-6 (62 ± 36%

decrease; P = 0.003). However, male subjects in the
placebo group and women in both ALA and placebo
group did not show any significant changes in IL-6
concentrations. Likewise, while the trend of change
in blood concentration of TNF-� was parallel to IL-6,
it failed to reveal any statistical significant differ-
ence. In addition, resistance training with or without
ALA supplements was effective in enhancing mus-
cle thickness (P = 0.05), muscle strength (P = 0.006)
and LBM (P < 0.01), and ALA had showed minimal
effects on these parameters. The researchers specu-
lated that the lack or minimum effect of omega-3 fatty
acid in this study in enhancing muscle mass may be
due to the supplemented form, i.e. flax seed oil versus
omega-3 in fish oil [111]. That is, flax seed fatty acids
(18:3n–3) have to undergo desaturation and elonga-
tion reactions to produce EPA (20:5n–3) and DHA
(22:6n–3), which are already present as the primary
omega-3 fatty acids in fish oil [121]. Nevertheless, the
potential influence of ALA in lowering plasma IL-6
level in older men is promising for future directions
toward the treatment of sarcopenia.

Although consumption of fatty fish and plant-
based rich sources appears to be reasonable strategies
to achieve adequate omega-3 fatty acids supplemen-
tation, research shows that dietary intake of omega-3
fatty acids in older adults might be insufficient
[115]. Therefore, more research is needed to identify
barriers preventing older adults from consuming sub-
stantial amounts of omega-3 fatty acids from natural
sources. Currently, research shows that consumption
of ≥1.27 g/day of omega-3 fatty acids or ≥1 servings
of fatty fish per week is associated with higher bone
mineral density, greater leg strength and lower time
to rise from a chair [115]. Thus, dietary and/or sup-
plemental forms of omega-3 fatty acids both appear
as useful and effective ways to improve sarcopenia-
related functional impairments in older adults.

4. Conclusion

With the rapid growth in the older adult popula-
tion, sarcopenia is becoming increasingly prominent
as a major health problem, contributing to enhanced
frailty and debility. Sarcopenia is a severe debilitating
condition with a progressive, frequently irreversible
nature. A broad range of investigations is required
to understand the pathophysiology of this condi-
tion in order to find feasible treatment approaches
to combat this age-related disorder. Without a doubt,
nutrition plays a central role in attenuating muscle
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mass loss in aging population, with some research
to date highlighting the roles of proteins and AA,
vitamin D and calcium, antioxidants and omega-3
fatty acids as some of the most promising nutri-
tional strategies to manage sarcopenia. Looking in
depth into the mechanism of action of each nutrient
can assist researchers in perceiving the cellular tar-
gets, possible interactions, synergistic or antagonistic
effects of these nutritious elements. To optimize these
nutritional strategies, one should also consider the
physiological impairments that seemed to accompany
aging such as as early onset of satiety in combi-
nation with prolonged chewing might significantly
diminish the amount of dietary nutrients consumed
by an elderly person. Therefore, in efforts to prevent
the onset of the sarcopenia or attenuate its progres-
sion, early continued nutritional therapies should be
considered for older adults in forms of both phar-
macological and dietary interventions with reflection
of both mechanistic and physiologic aspect of each
and all nutrients. There is also a paucity of infor-
mation regarding combination nutritional therapies
which includes protein/AA, vitamin D and calcium,
omega-3 fatty acids and antioxidants. Overall, more
research is needed to establish exact age of supple-
mentation initiation, exact amounts for the nutrients
of interest, combinations of nutrients, and optimum
form and schedule of administration.
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