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Shrinkage estimation of NFL
field goal success probabilities
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Abstract. National Football League (NFL) kickers have displayed improvement in both range and accuracy in recent years.
NFL management in turn has displayed a rather low tolerance for missed field goals, particularly in game-deciding situations.
However, these actions may be a consequence of a perceived appreciable variability in NFL kicker ability. In this paper, we
consider shrinkage estimation of NFL kicker field goal success probabilities. The idea derives from the literature on estimating
batting averages in baseball, though the classic James-Stein shrinkage approaches there do not apply to independent binary
field goal attempt trials. We study a variety of weighting schemes for shrinking model-based kicker-specific field goal
success probability estimates to a league-wide estimate, as a function of distance. As part of the development, we briefly
detail collecting NFL play-by-play data with the R statistical software package, identify the complementary log-log link
function as preferable to the more commonly applied logit link function in a generalized linear model for field goal success,
and demonstrate the desired variance-reduction, both in and out of sample, enjoyed by our proposed shrinkage estimators.
We illustrate our methods by ranking NFL kickers from 1998 to 2014, analyzing individual kicker success at mid-range and
long-range field goal attempts, and studying kicker ability over the last decade. Stadium effects are added to the model and
found to be highly significant and to have an impact on the kicker rankings.
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1. Introduction

Given the high frequency of personnel transactions
involving field goal kickers in the National Football
League (NFL), there appears to be a perception of
considerable variability among their abilities to carry
out their duties, at least among general managers.
In particular, when kickers miss field goals or extra
points that are perceived to cost their team a game,
they are sometimes terminated shortly thereafter, pre-
sumably reasoning that a replacement would have a
better chance of success from the same distance. Con-
sider the 2010 New Orleans Saints. In Week 3, Garrett
Hartley missed a 29 yard field goal attempt in an over-
time loss. He was replaced by veteran John Carney,
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who in turn missed a 29 yard field goal attempt in
another loss two weeks later. Hartley then regained
his job the following week. The Saints are not the
only team with a quick trigger on in-season kicker
personnel decisions. Table 1 summarizes the number
of kickers who have been released, for reasons not
listed as injury, over the 2000-2014 timeframe. On
average, there are more than 3 such kickers released
per season. These counts were assembled by inspec-
tion of season summaries of kickers found on and
subsequent post-hoc inspection of various websites
that track transactions.

Quantitative analyses (Morrison and Kalwani,
1993) have found surprisingly limited evidence of
differences among kickers. In an investigation of
weather and distance effects on kicking, Bilder and
Loughin (1998) chooses not to model individual
kicker effects, describing kickers as “interchange-
able parts.” In a study of whether “icing the kicker”
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Table 1

Number of mid-season performance-based kicker changes over time

Year 2001-2003 2004-2006 2007-2009 2010-2012 2013-2015
Number players released 12 10 11 6 10

affects kickers (it does!), Berry and Wood (2004) also
assumes that dependence of log-odds of success on
distance to be the same for all kickers. If there are dif-
ferences among kickers in the way they are affected
by field goal attempts of increasing distance, these
effects may be subtle enough to go undetected with-
out large samples. Due to these subtleties, estimation
of success probabilities for particular kickers can be
a difficult task.

We consider the problem of estimating probabil-
ities of field goal success using play-by-play data
available on the web. As with analogous investi-
gations in the literature, we develop generalized
linear models which assume kicks to be indepen-
dent Bernoulli trials. However, we show that the
complementary log-log (CLL) link provides a bet-
ter fit than the logistic regression models typically
applied in prior work. In models that include kicker
effects, estimates of field goal success for inexpe-
rienced kickers may have high sampling variance
due to small samples. We investigate a number of
shrinkage techniques that borrow information from
field goal attempts by other kickers in an effort to
reduce the sampling variance in these kicker-specific
estimates.

The textbook by Morris and Rolph (1981) uses
the problem of estimating field goal success prob-
abilities after regression on distance (grouped into
intervals with 10 yard widths) as an introduction to
logistic regression. Berry and Berry (1985) develops
a generalized linear model for field goal and extra
point success probabilities using a customized link
function that is derived from consideration of three
factors: distance, left-right error, and the chance of
a non-goalpost related error (a fumble or blocked
kick). Other work investigating additional factors
beyond distance that may be associated with field
goal success probabilities, such as weather and psy-
chological pressure, includes Bilder and Loughin
(1998); Pasteur and Cunningham-Rhoads (2014);
Berry and Wood (2004); Clark et al. (2013). All of
these contributions are in agreement that the single
most important factor in predicting field goal suc-
cess is the distance of the attempt. Morrison and
Kalwani (1993) fails to reject the hypothesis of equal
success probability among all kickers. Pasteur and
Cunningham-Rhoads (2014) uses cross-validation to

select variables and finds that adding distance to an
intercept-only model decreases a predictive mean
squared error criterion by 14%, but that adding an
additional 7 variables (including temperature, wind,
kicker fatigue, defense quality, and whether the kick
was in Denver) brings about a further reduction that is
less than 2%. Since many failed extra point attempts
are a consequence of poor snaps or holds, we restrict
our attention to field goal attempts and do not con-
sider extra point success probabilities or data in our
analyses.

Our aim in this paper is not to select variables for
the best model, nor to account for the various sub-
tle (in comparison to distance) effects of weather or
psychological pressure, but rather to demonstrate the
potential advantages of shrinking regression-based
estimators towards a central value with the goal of
variance-reduction. Indeed, this work is motivated
by the success of James-Stein shrinkage techniques
(Efron and Morris, 1975; Brown, 2008) for the prob-
lem of predicting batting averages in baseball.

In Section 2, we describe our data collection pro-
cedure and consider data-driven selection of the link
function in a generalized linear model for field goal
success. In Section 3, we consider a variety of shrink-
age estimators for the kicker and distance-specific
success probabilities as functions of model parame-
ters. In Section 4, we illustrate several applications of
our shrinkage estimators, including a ranking of kick-
ers and a discussion of long field goal attempts and
stadium effects. We present a summary and conclude
in Section 5.

2. Data and statistical models

2.1. Data collection: web scraping with R

Like most other work in the area, we assume
kicks to be independent and model the dependence
of success probability on explanatory variables using
generalized linear models. The explanatory informa-
tion we consider includes only the distance of the
attempt and who the kicker is. Using the readLines()
command and regular expressions functionality in the
R statistical software package (R Core Team, 2014),
the distance of a field goal attempt is gleaned from
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Fig. 1. Play-by-play item containing relevant information on a field goal attempt.

the website with url .This website has complete play-
by-play information going back as far as 1998. More
specifically, the string “yard field goal" is matched
and the kicker and distance occurring in the string
before the match are recorded along with the outcome
that follows the match. Every field goal attempted,
even those on which a penalty occurred, but for which
a result was given in the play-by-play transcript, are
included in the dataset. The task loops over sea-
sons 1998-2014, weeks within season (including the
NFL playoffs), games within week, and finally plays
within game.

The dataset contains 17, 104 attempts from more
than K = 111 kickers. Kickers who made or missed
all of their career attempts are excluded from consid-
eration to avoid separability issues with maximum
likelihood estimation. (Jaret Holmes played for three
teams from 1999-2001, making all five of his field
goal attempts and all four of his extra point attempts
successfully. Danny Boyd was even better, making
5/5 field goals and 7/7 extra points for Jacksonville
in 2002.)

Outcomes were dichotomized as “good” or “not
good”, the latter event includes blocks and fumbled
holds. Our reasoning is that the blame for failed
attempts usually rightly falls on the kicker, but some-
times the snap, the hold or the blocking are at fault.

The records online do not easily allow for deter-
mination of blame. An example of an entry that
was scraped from the url (http://www.pro-football-re
ference.com/boxscores/199809060cin.htm). (a game
from week 1 of the 1998-1999 season) appears in
Fig. 1.

Occasionally, comparisons between total kick fre-
quencies computed from play-by-play data with
kicker career totals will reveal slight discrepancies,
where certain plays are absent from the pro-football-
reference play-by-play information. For example, in
a 1998 Week 1 game of the New England Patriots at
the Denver Broncos, Adam Vinatieri of the New Eng-
land Patriots had a 37 yard field goal attempt during
the second quarter. The pro-football-reference play-
by-play account of the event is blank (see Fig. 2). We
resorted to the site to attempt to rectify this particular
record. Though we could not find links on the site to
play-by-play information for games before 2001 (a
situation in which automated screen-scraping is then
difficult), we were able to find some urls, with links
provided by a search engine.

2.2. Choice of a link function

For notation, we let k = 1, . . . , K index the kick-
ers (K = 111 in our application) and let j = 1, . . . , N

Fig. 2. Play-by-play item for a blocked kick by Adam Vinatieri in a 1998 Week 1 game that appeared as a blank on pro-football-reference. com.

pro-football-reference.com
http://www.pro-football-reference.com/boxscores/199809060cin.htm
http://www.pro-football-reference.com/boxscores/199809060cin.htm
www.nfl.com
pro-football-reference.com
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(N = 17104) index all of the field goal attempts. For
each attempt, we let binary outcome Oj = 1 if the
kick is good, and Oj = 0 otherwise. The probabil-
ity of success of attempt j is denoted πj . The general
form for the log-likelihood function of all of the prob-
ability parameters {πj} for independent, dichotomous
data with outcomes oj is given by

log L(π1, . . . , πN |{oj})

=
N∑

j=1

{oj log(πj) + (1 − oj) log(1 − πj)}.

Generalized linear models adopt a link function g,
through which the probabilities πj are transformed to
an expression that is linear in regression coefficients
introduced to model the effects of available explana-
tory variables (and reduce the dimension of the
parameter space). We define dj as the distance of the
jth attempt and define indicator variables for kicker
k as Xjk = I(jth attempt is by kicker k), for k =
1, . . . , K, with regression coefficients β1, . . . , βK.
The probability parameters are now, after transfor-
mation by the link function g, linear in the regression
coefficients,

g(πj) = β0 + (β1Xj1 + β2Xj2 + . . . + βKXjK) × dj.

We refer to βk as a kicker-specific slope and can
test the significance of estimated regression coeffi-
cients by comparison with a generalized linear model
with only one slope, β, to accommodate all kickers,

g(πj) = β0 + βdj.

In applications in which statistical regression mod-
els are developed for binary response variables,
logistic regression seems to be the most popu-
lar choice (Pasteur and Cunningham-Rhoads, 2014;
Morris and Rolph, 1981; Bilder and Loughin, 1998;
Berry and Wood, 2004), perhaps because of its inter-
pretability, particularly through odds ratios. However,
several other link functions are easily explored using
statistical software for generalized linear models. We
introduce a superscript notation for probability func-
tions associated with kickers that will simplify the
shrinkage estimation exposition in Section 3. Let
πk(d) denote the success probability function for
kicker k at any distance d. We consider three choices
for the link function: logistic, probit, and CLL. Let �

and �−1 denote the cumulative distribution function
and quantile function, respectively, of a random vari-
able with standard normal distribution. Then the links
and inverse links (probability functions) for these
three candidates are given below:

logistic g(πj) = log
(

πj

1−πj

)
=⇒ πk(d) = 1/{1 + exp(−β0 − βkd)}

probit g(πj) = �−1(πj)

=⇒ πk(d) = �(β0 + βkd)

CLL g(πj) = log
{− log(1 − πj)

}
=⇒ πk(d) = 1 − exp{− exp(β0 + βkd)}.

The log-likelihood function of a specified link
function uses the reparameterizations above. As an
example the log-likelihood for the logistic link is
given by

log L(β0, β1, . . . , βK; {oj}, {dj})

=
N∑

j=1

(
oj{β0 + (β1xj1 + · · · + βKxjK)dj}

− log[1 + exp{β0 + (β1xj1 + · · · + βKxjK)dj}]
)
.

Table 2 summarizes the maximized log-likelihood
function when using the logit, probit, and CLL link
functions for estimating field goal success probability
in our data set. Tests comparing the nested models
within a column of the table are all highly significant
on 110 degrees of freedom (comparing models with
K = 111 different slopes to a model with a single
slope), indicating significant differences among the
estimated slopes. With such a large sample, there does
appear to be enough data to detect potentially subtle
differences among kickers.

Figure 3 presents the inverse link functions applied
to the empirical success frequencies against dis-
tance. The lines overlaid on the plots are from
maximum likelihood estimation of the single-slope
model. Residuals computed as standardized differ-
ences between transformed success frequencies and
the estimated link functions are plotted against dis-
tances in Fig. 4, providing an enhanced visualization

Table 2

Comparison of link functions: –2 × maximized log-likelihood
using full or restricted data set

Link function
Comp.

Data Model Logit Probit log-log

All Common slope 14382 14365 14367
Kicker-specific slopes 14081 14062 14060

χ2 (df = 110) statistic 301 303 307
Restricted to Common slope 11827 11820 11815
25 ≤ d ≤ 50 Kicker-specific slopes 11547 11535 11524

χ2 (df = 110) statistic 302 307 312
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Fig. 3. The fits provided by three inverse link functions. Plot
(a) presents the three fits to the empirical frequency data: logit
link fit solid/blue, probit link dashed/red, complementary log-log
link dot-dashed/green. Plots (b), (c) and (d) present the fits after
link transformation. All four plots have distance in yards as the
horizontal axis.
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Fig. 4. Residuals from three link functions in generalized linear
models (logit as blue squares, probit as red triangles and comple-
mentary log-log as green circles). Residuals are differences from
link-transformed empirical success frequencies and estimated link
functions and have been normalized to have unit variance. Plot-
ted against distances with at least 100 attempts, with Lowess
smoothers overlaid using solid lines.

of the fits. Link-specific lowess smoothers overlaying
these plots suggest that the residuals from the CLL
fit exhibit the least dependence on distance.

In an analytical comparison of link functions,
McCullagh et al. (1989) observes that for trials with

intermediate success probability, 0.1 ≤ π ≤ .9 (the
vast majority of field goal attempts), probit and
logistic functions are nearly linearly related, so that
discrimination between the fits of models using these
two links is difficult. Additionally, for trials with
success probability approaching one (which occur
as field goal attempt distances decrease towards 17
yards), the CLL approaches one more slowly than
either of the other two link functions. The CLL link
can also differ (Dobson and Barnett, 2011) from logit
and probit links for small values of π, which are often
of greatest interest when assessing kickers. Close
inspection of Fig. 3 and Fig. 4 seem to reflect these
observations, with better agreement with empirical
frequencies on short kicks than that provided by either
logit or probit. Fitting these models using kicks at
the extremes may be problematic in that misses at
short distances are likely due to mishandled snaps
and attempts at long distances may lead to selection
bias since these attempts are probably only afforded
to very good kickers. In light of these issues, log-
likelihood ratios are also reported after restricting
attention to kicks with distances between 25 and 50
yards. With this restriction, the CLL link achieves
the maximum likelihood among the link functions
for models with either a single slope or with kicker-
specific slopes.

The statistic proposed by Hosmer and Lemeshow
(2004) (HL) offers another way to assess goodness-
of-fit in regression models for binary data with
continuous explanatory variables. The HL statistic
is a Pearson-style measure of goodness-of-fit whose
sampling distribution under a correctly specified
model can be approximated by a chi-square distri-
bution. The HL procedure partitions all kicks into
10 groups of roughly equal size. (We accomplished
this using the algorithm laid out in the documenta-
tion for PROC LOGISTIC within the SAS statistical
software package (SAS Institute, 2011).) The proce-
dure then computes, for each group, observed (Oi)
and expected (Ei) counts of successful kicks by aver-
aging estimated probabilities within group, in order
to compute the χ2 statistic, X:

π̂i = 1

ni

ni∑
j=1

π̂j,

Ei = niπ̂i, and

X =
10∑
1

(Oi − Ei)2

Ei(1 − π̂i)
.
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Table 3

Summary statistics for Hosmer-Lemeshow assessment of the complementary log-log and logit link functions

Complementary log-log link Logit link
FG Made FG Made

Group i kicks, ni oi ei χ2 kicks, ni oi ei χ2

1 1710 883 898.02 0.53 1711 871 842.32 1.92
2 1699 1112 1097.46 0.54 1712 1132 1104.61 1.91
3 1709 1217 1213.65 0.03 1715 1218 1241.27 1.58
4 1712 1315 1310.01 0.08 1705 1334 1336.55 0.02
5 1706 1387 1392.39 0.11 1710 1385 1425.98 7.09
6 1711 1473 1478.97 0.18 1712 1470 1500.63 5.06
7 1720 1565 1558.60 0.28 1709 1555 1555.20 0.00
8 1709 1604 1606.43 0.06 1709 1600 1598.85 0.01
9 1713 1655 1653.44 0.04 1713 1655 1635.25 5.26
10 1715 1685 1685.86 0.06 1708 1676 1655.34 8.37

sum 17104 13896 13894.83 1.89 17104 13896 13896.00 31.23

The summary statistics necessary for computa-
tion of the HL statistic are given in Table 3 for the
logit and CLL links. The logistic regression model
does not provide a good fit for the 10th group,
where the estimated success probability is highest.
The average estimated probability among these 1708
kicks is π̂10 = 0.9692 for an estimated expected
cell count of e10 = 1708 × 0.9692 = 1655.34. How-
ever, the observed count is o10 = 1676 successful
kicks, resulting in a large contribution, (1676 −
1655.3)2/{1655.3(1 − 0.9692)} = 8.4, to the chi-
square statistic.

Table 4 gives HL chi-square statistics and
p-values on 8 degrees of freedom for each of the
three link functions with either a single slope, or with
kicker-specific slopes. The models with the CLL link
function are the only ones that do not exhibit signifi-
cant lack-of-fit. With such a large sample size (N =
17, 104 attempts), even subtle lack-of-fit is likely to
be detected, as in the logistic (p = .0291, .0657) and
probit (p < .0001, p = .0001) models. Despite this
significance, neither of the two provides a bad fit.

Lastly, a link function could be chosen on the basis
of how well probabilities estimated using the link
can predict successful and unsuccessful field goal

attempts. A decision rule which predicts a success-
ful field goal when the estimated success probability
exceeds some threshold (π̂ > π0) has as its sensitivity
and specificity the corresponding relative frequencies
of successes among kicks which fall, respectively,
above or below this threshold. A plot of sensitivity
against one minus specificity is called the receiver
operating characteristics (ROC) curve and the area
under this curve (AUC) is a common way of assessing
the capacity of a fitted model to predict successes and
failures. The AUC for models with a single slope that
are not kicker-specific will necessarily be the same for
all three links, as the ordering of the estimated prob-
abilities is determined only by the distance of the
attempts. However, small differences in AUC exist
among the three links when kicker-specific slopes
are included in the model. This ordering is consis-
tent with that implied by visual inspection of Fig. 3.
The AUC values, all close to 0.75, are presented in
Table 5.

Since the CLL link enjoys the smallest HL and
largest AUC under cross-validation (as described
in Section 3.1), computations under the other two
link functions are excluded from presentation in the
remainder of the paper.

Table 4

Hosmer-Lemeshow statistics and p-values for two models, each using the three different link functions

Link function
Data Model Logit Probit Comp log-log

All Common slope 34.1(<0.0001) 17.1(0.0291) 8.9(0.3489)
Kicker-specific slopes 31.2(0.0001) 14.7(0.0657) 1.9(0.9843)

Restricted to Common slope 16.8(0.0329) 11.6(0.1720) 7.9(0.4463)
25 ≤ d ≤ 50 Kicker-specific slopes 32.3(0.0001) 24.1(0.0022) 14.8(0.0630)
Restricted to Common slope 19.4(0.0130) 12.4(0.1326) 7.8(0.4508)
25 ≤ d ≤ 55 Kicker-specific slopes 24.2(0.0021) 16.3(0.0380) 10.4(0.2383)
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Table 5

Area under the curve (AUC) for the three link functions

Link function
Model Logit Probit Comp log-log

Common slope 0.7490 – –
Kicker-specific slopes 0.7640 0.7641 .7646

3. Shrinkage estimation

Model-based estimates of kicker-specific success
probabilities have large variance except in cases
where the number of observed attempts for a given
kicker is very large. As an example, consider interval
estimation of the probability of success when kicking
a 45 yard field goal using the CLL link function. For
Adam Vinatieri, who has 572 career attempts, the
95% interval estimate is (0.69, 0.78). However, the
95% interval estimate of 45 yard field goal success
probability for Garrett Hartley, who has 115 career
attempts, is (0.59, 0.80), more than twice as wide as
the interval estimate for Vinatieri. Estimators with
reduced variance may be constructed by taking a
weighted average of the kicker-specific maximum-
likelihood estimator (MLE) and one developed for
the average of all kickers. That is, the variance of
an estimator may be reduced by shrinking it towards
another estimator which has much lower variance.

Efron and Morris (1975) and Brown (2008)
employed this method, viewed from an empirical
Bayes perspective, to predict end-of-season batting
averages in Major League Baseball. In particular,
the papers propose shrinking hitter-specific estimates
based on a small number of at-bats towards the early
season batting average among all hitters. The meth-
ods are based on the theory James and Stein (1961)
develops for estimation of the mean of a multivari-
ate normal distribution. That theory does not apply
directly to estimation of success probabilities for
independent binary trials, as in field goal attempts,
but the idea of variance-reduction is worth exploring.

Without any shrinkage, the kicker-specific MLE of
the success probability at a given distance d is given
by

π̂k(d) = 1 − exp{− exp(β̂0 + β̂kd)}.
The estimator with complete shrinkage is simply

the empirical frequency of all kicks taken by all kick-
ers at that distance,

π̂EF (d) =
∑

j:dj=d oj∑
j:dj=d 1

.

These empirical frequencies are plotted in the top
left graphic in Fig. 3.

3.1. Proposed shrinkage estimators

For shrinkage estimators of the success probability
at a given distance, π(d), we consider estimators that
are weighted averages of the MLE and empirical fre-
quency estimators defined above, π̂k(d) and π̂EF (d),
respectively. These shrinkage estimators may be writ-
ten in a general form using a weighting function ω:

π̂(d) = ω · π̂k(d) + (1 − ω) · π̂EF (d),

where the notation to indicate dependence of the
probability estimate on the left-hand side on kicker
k is suppressed for convenience. We consider three
options for this weighting function: a constant, ω0; a
function of the sample size n available for a given
kicker; and a function characterized by a tuning
parameter, say a, through which to optimize the
weighting scheme.

The first shrinkage estimator we propose is sim-
ply the midpoint between the two components. We
refer to this shrinkage estimate, obtained by set-
ting ω = 1/2, as the midpoint estimator (denoted by
superscript M):

π̂M(d) = 1

2
π̂K(d) + 1

2
π̂EF (d).

One approach towards constructing a shrinkage
estimator that weights model-based kicker-specific
estimates more heavily is simply to weight compo-
nents in inverse proportion to their standard errors.
This will upweight the MLE, π̂k(d) for veteran kick-
ers for whom more information is available. For the
MLE, we rely upon the GLIMMIX procedure of
SAS to produce asymptotic standard errors to accom-
pany the maximum likelihood estimator, denoted
by SEk = SE

(
π̂k(d)

)
. For the empirical frequency

component π̂EF (d), we use SEEF = SE
(
π̂EF (d)

) =√
π̂EF (d)

(
1 − π̂EF (d)

)
/Nd where Nd denotes the

total number of kicks attempted at distance d in the
entire dataset. If the empirical frequency is 0, such
as at d = 65, we used SEEF = √

0.5 · 0.5/Nd . The
resulting inverse variance (IV) weighted shrinkage
estimate can then be written in the general weighted
average form by taking ω = SEEF/(SEk + SEEF ):

π̂IV(d) = SEEF

SEk + SEEF

π̂k(d) + SEk

SEk + SEEF

π̂EF (d).

Note that because sample sizes differ, this weight-
ing scheme can lead to different weights at different
distances.
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Another approach is to choose a weighting func-
tion for the MLE that is increasing in nk towards a
maximum weight of one. Any cumulative distribu-
tion function (CDF) has this property. We choose the
exponential distribution function, which for a suit-
ably chosen rate parameter a, increases rapidly for
small n with diminishing returns on large nk:

ω(n) = 1 − e−nk/a.

This choice leads to the exponentially weighted
shrinkage estimator,

π̂exp(d) = (1 − e−nk/a)π̂k(d) + e−nk/aπ̂EF (d).

The quantity a in the exponential weights estimator
can be viewed as a tuning parameter, whose value is
“fit” using the entire dataset and whose performance
is evaluated by cross-validation (see Section 3.2). For
the a parameter, mean values 100 < a < 700 were
considered, reasoning that the kick counts fell in the
interval 4 < nk < 572. A search of values of a, to the
nearest multiple of 10, achieves a Hosmer-Lemeshow
(HL) statistic of HL = 9.32 at an optimized value
of a = 670. Using the exponential CDF with mean
a = 670 for a weight function, the corresponding
weights on the model-based estimates for kickers
with sample sizes of nk = 10, 50, 100, 200, 400
would be 0.02, 0.07, 0.14, 0.26, 0.45, respectively.

Figure 5 presents a plot of the weight function,
ω for these different shrinkage estimators. The two
separate curves provided for the IV weighted esti-
mator corresponds to kicks at d = 45 and d = 55
yards. The empirical frequencies at these two dis-
tances were π̂EF (45) = 353/484 = 0.73 and π̂EF =
26/52 = 0.50, respectively. For these two distances,
plots against sample size suggest that the model-
based standard errors may be roughly approximated
by

√
0.64/n and

√
0.54/n, respectively. Because of

the dependence of the empirical frequency on sam-
ple size, with little information to go by for kicks
as long as d = 55 yards, the IV weighted estimator
places more weight on the first component for a kick
at d = 55 yards than one at d = 45 yards. All of these
curves, with vertical axis given on the right of the plot,
are superimposed over a frequency histogram show-
ing how the N = 17, 104 attempts are distributed
across the K = 111 kickers. The frequencies of kick-
ers with different experience levels is given on the
left vertical axis.

The estimators of success probability can be
naturally shrunk towards central values by means
of a Bayesian generalized linear model with CLL
link utilizing empirical Bayes estimation (see e.g.,
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Fig. 5. Weight functions for shrinkage estimation, “exp” plots the
weights based on the exponential distribution and IV plots the
weights proportional to the inverse of the variances of the compo-
nents.

Carlin and Louis (1997)). In such a model, as fit using
the bayesglm function of the arm package in R
(Gelman et al., 2014), the regression coefficients are
assumed to be independent, normally distributed ran-
dom variables with mean and variance characterized
by hyper-parameters that are specified from data, in
our case:

β0 ∼ N(0, 10)

β1, . . . , βK
iid∼ N(−0.05, 0.02).

The hyperparameters for the intercept are the
default choices for the bayesglm function and
those for the kicker-specific slope were chosen from
the sample mean and variance of maximum likeli-
hood estimates from the frequentist generalized linear
model fit.

Fig. 7 illustrates the reduction in variance due to
shrinkage. For attempt distances, d = 30, 40, 50, 60
yards, random samples of 10 kicks were selected. The
estimated success probability estimates are plotted
using different colors, with estimation technique on
the horizontal axis. Not only is the reduction in vari-
ation apparent, but the model-based estimates at 60
yards are shifted downward. The explanation for this
shift is lack-of-fit of the model for very long attempts.
Shrinkage towards the empirical frequency tends to
alleviate bias caused by this poor fit.

3.2. Assessment using cross-validation

While HL is useful for quantifying how well sev-
eral fitted models align with observed data, it may not
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Fig. 7. Model-based maximum-likelihood and shrinkage (mid-
point) estimates of success probability, colored according to
attempt distance (30, 40, 50, and 60 yards plotted with black, red,
green and blue lines, respectively).

tell the entire story as to how well the fitted model
would generalize to observations made in the future,
or out-of-sample data. Cross-validation (CV) can be
used to quantify the degree to which a model fitted
to observed data generalizes to data not used to fit
the model or to compare the capacity of several mod-
els to generalize. Pasteur and Cunningham-Rhoads
(2014) uses five-fold CV to select weather, pressure,
and fatigue variables for a multiple logistic regres-
sion model. In five-fold CV, the dataset is partitioned

into five subsets of equal size. The first subset is held
out of the process where the model is fit, and then the
fitted model is used to estimate the probabilities of
the events that were held out. HL is then computed
only for the held-out subset. This step is repeated four
more times, holding out each subset exactly once.

As can be seen from inspection of the first two
numerical columns of Table 6, neither the model-
based estimate (CLL) nor the empirical frequency
(EF) generalize well under 5-fold CV, in the sense
that there is disagreement between the number
of observed and expected successful kicks when
attempts are put into the 10 groups for the HL statis-
tic. Recall that the midpoint estimated probability
for any kick is simply the midpoint between CLL
and EF. While this shrinkage estimate has a greater
HL than its CLL and EF components when the
entire dataset is used both to fit the model and to
compute the goodness-of-fit statistic, it shows better
agreement between observed and expected success-
ful kicks under CV. The CV procedure was repeated
four times, using four random partitions of the dataset
into five subsets. Each time, the midpoint estimate
enjoys a better fit for the held-out data than either of
its two components, as quantified by the HL statistic.
The shrinkage estimators based on the exponential
weights, with a = 660, 670 or 680 also performed
better than either component by itself. In computation
of these estimates, the step of tuning the a “parame-
ter” was not repeated during cross-validation. Rather,
estimates based on values of a = 660, 670, 680
(which did the best on the entire dataset) were com-
puted for every observation, and only those results
are reported here. If this weighting scheme is toler-
able, then it appears to perform comparably to the
simple midpoint shrinkage estimator. Among the six
estimators reported in Table 6, there is no dominant
choice when considering performance under cross-
validation. One clear observation, however, is that the
midpoint and exponential shrinkage estimators are
generalizing to out-of-sample data better than either
the CLL or EF components by themselves.

4. Applications

4.1. Ranking kickers

In addition to estimating the success probability
for a given kicker from a given distance, the estima-
tion methodology can be used to rank NFL kickers.
Historically, comparisons among kickers in sports
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Table 6

Hosmer-Lemeshow statistics under 5-fold cross-validation for the estimators π̂k , π̂EF , π̂M , π̂exp (under different tuning parameters a),
π̂IV , and the Bayes estimator.

Shrinkage 5-fold Cross Validation
Estimator All Data 1x 2x 3x 4x CV avg

CLL 1.89 15.60 20.13 22.59 22.13 20.12
EF 0.00 8.96 25.25 19.45 13.14 16.70
midpoint 11.87 8.70 9.57 5.29 4.68 7.06
exp(a=660) 9.83 6.97 10.03 4.19 9.07 7.56
exp(a=670) 9.32 7.05 10.52 4.23 9.21 7.75
exp(a=680) 9.93 7.16 10.20 4.81 7.73 7.47
IV 12.69 16.30 33.70 19.12 18.50 21.90
Bayesian CLL 19.08 29.03 10.72 11.94 17.72 17.35

media have been made using the overall number (as
on espn.go.com) or proportion of successful attempts
(as on sports.yahoo.com or si.com) without regard to
distance, as it not obvious how to incorporate distance
and degree of difficulty based on summary statis-
tics. Alternatively, Berry and Berry (1985) suggests
averaging model-based kicker-specific estimates over
the league-wide distribution of attempt distances. A
histogram for these attempts is given in Fig. 8. The
average distance over all 17, 104 attempts was 36.6
yards. Tables 7, 8, and 9 present a ranking of kickers
under this summary statistic, using several differ-
ent methods of estimation, along with the standard
“overall” metric.

For veteran kickers with a large number of kicks
that are similar in distribution to that of the whole
league, the effect of shrinkage is minimal. Adam
Vinatieri has succeeded on 84% of 572 attempted
kicks at an average distance of 35.8. His model-based
estimate averaged over the distribution of all NFL
kicks in 1998-2014 is 0.83 and the shrinkage estimate

Fig. 8. Frequency histogram of attempt distances.

is only slightly different at 0.82. Conversely kickers
like Patrick Murray and Greg Zuerlein have achieved
very successful records so far in their young careers,
hitting 20/24 (83%) and 73/89 (82%), at longer-than-
average average distances of 41.1 yards and 40.0
yards respectively. Their model-based estimates aver-
aged over the league-wide distribution of distances is
more favorable (87% and 86%; note the bump up in
rank from that based on the empirical frequency) but
the shrinkage estimate brings these closer to more
average kickers (84% for both kickers).

These tables suggest a ranking that places many
current kickers among the best over the last 16 year
period. Justin Tucker has been successful on 105
out of 116 attempts, with average distance d̄ = 38.1
for an overall mark of 91%. The kicker-specific,
model-based estimate averaged over the league-wide
distribution of attempt distances is 92%, but the mid-
point technique shrinks this back to 87%. By any
of the three methods, Tucker is ranked to be the
most accurate among the K = 111 kickers under
consideration.

4.2. Stadium effects

A topic of interest for many fans, writers and
announcers is the effects of certain stadiums on the
chances of making a field goal. The open end of
Heinz Field receives particular attention for increased
difficulty due to wind (Batista, 2002). Modeling
fixed factorial effects for stadiums enables investi-
gation of this issue. Though a likelihood ratio test
finds evidence of stadium effects (χ2 = 112, p <

0.0001, df = 50), their inclusion does not lead to
an improved fit as assessed by Hosmer-Lemeshow,
where there is a greater discrepancy between
observed and expected counts than the model
based on kickers and distances alone (HL = 8.3

espn.go.com
sports.yahoo.com
si.com
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Table 7

Kicker ranking by shrinkage estimate over distribution of all kicks. The columns include the average attempt distance, actual success
frequencies for kicks of less than 40 yards, 40-49 yards, and at least 50 yards, overall proportion of successful field goal attempts, ranking

by overall success proportion, kicker-specific MLE (π̂) and midpoint shrinkage estimate of success probability (π̂M )

Kicker avg attempt < 40 40 − 49 ≥ 50 pct rank π̂ π̂M

Justin Tucker 38.11 64/65 26/30 15/21 0.91 1 0.92 0.87
Dan Bailey 38.71 63/66 35/39 17/25 0.88 3 0.90 0.86
Chandler Catanzaro 38.21 17/19 10/11 2/3 0.88 5 0.89 0.85
Kai Forbath 36.90 35/38 22/25 2/4 0.88 4 0.88 0.85
Blair Walsh 39.01 53/57 19/24 17/24 0.85 17 0.88 0.84
Connor Barth 38.52 65/69 42/51 13/20 0.86 11 0.87 0.84
Cody Parkey 35.42 24/26 4/6 4/4 0.89 2 0.87 0.84
Patrick Murray 41.08 9/11 6/7 5/6 0.83 27.5 0.87 0.84
Dan Carpenter 38.03 111/115 65/82 20/34 0.85 16 0.87 0.84
Steven Hauschka 36.45 95/100 40/49 9/17 0.87 8 0.86 0.84
Greg Zuerlein 39.96 43/48 17/19 13/22 0.82 39 0.86 0.84
Robbie Gould 36.55 164/173 74/100 17/23 0.86 9 0.86 0.84
Rob Bironas 37.62 147/158 71/92 24/35 0.85 15 0.86 0.84
Jason Hanson 38.31 210/223 108/141 43/68 0.84 23 0.86 0.83
John Kasay 37.32 198/203 88/114 32/63 0.84 22 0.85 0.83
Stephen Gostkowski 35.08 185/201 65/85 14/18 0.87 7 0.85 0.83
Josh Brown 37.72 185/196 81/111 35/54 0.83 25 0.85 0.83
Matt Bryant 35.91 200/214 73/95 20/34 0.85 12 0.85 0.83
Mike Vanderjagt 35.85 157/167 71/95 15/23 0.85 13 0.84 0.83
Matt Stover 34.96 236/247 97/131 9/20 0.86 10 0.84 0.83
Jeff Hall 39.60 2/2 1/2 1/1 0.80 54.5 0.84 0.82
Shayne Graham 35.29 197/211 69/89 15/30 0.85 14 0.83 0.82
Sebastian Janikowski 38.99 222/239 111/148 48/88 0.80 53 0.83 0.82
Phil Dawson 35.65 256/280 85/115 35/51 0.84 19 0.83 0.82
Adam Vinatieri 35.80 322/354 135/173 26/45 0.84 18 0.83 0.82
Jeff Wilkins 37.35 166/177 67/100 28/41 0.82 38 0.83 0.82
Joe Nedney 36.77 154/163 62/88 17/31 0.83 35 0.83 0.82
Ryan Longwell 36.68 228/248 97/133 24/40 0.83 32 0.83 0.82
Josh Scobee 38.15 142/153 74/106 26/42 0.80 50 0.83 0.82
Gary Anderson 35.70 105/114 56/74 3/7 0.84 20 0.82 0.82
Ryan Succop 37.03 88/96 43/58 12/20 0.82 36 0.82 0.82
Shaun Suisham 35.98 142/157 76/94 6/18 0.83 30 0.82 0.82
Randy Bullock 38.66 34/37 19/25 5/11 0.79 57 0.82 0.82
Nate Kaeding 35.46 129/135 51/73 10/19 0.84 21 0.82 0.82
Garrett Hartley 35.12 62/73 28/34 6/8 0.83 24 0.81 0.81
Jay Feely 36.40 232/259 95/130 19/34 0.82 41 0.81 0.81
Nick Folk 37.33 128/142 57/78 19/34 0.80 52 0.81 0.81

with stadium effects and HL = 1.9 without sta-
dium effects, from Table 3). Nevertheless, including
these effects does help to identify the more diffi-
cult and more favorable stadiums in which to kick,
though again the estimation may suffer from selection
bias.

Success probabilities for each stadium can be esti-
mated by back-transforming the marginal mean on
the CLL scale. These marginal means average equally
over all kickers and correspond to the average dis-
tance of d̄ = 36.6 yards. These estimates provide a
ranking of stadium difficulty and are given in Table
11 along with empirical game and field goal attempt
counts. We make no attempt to shrink these estimates,
rather, we simply restrict our attention to stadiums

for which more than 100 attempts are available in
our dataset. Table 11 also gives average distances at
which coaches have allowed their kickers to attempt
field goals, game counts and empirical success
rates.

The ranking in Table 11 seems to corroborate
the anecdote that Heinz Field is a tough place to
kick, as does the lower-than-average distance of field
goal attempts. The new stadium in Denver, “Sports
Authority Field at Mile High,” also has a reputa-
tion as a good place to kick and it does turn up
high on this list. The estimates based on marginal
means also tend to be lower than the empirical suc-
cess rates. This observation may possibly be due to
the fact that marginal means average equally over all
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Table 8

Ranking by shrinkage estimate over distribution of all kicks, continued

Kicker avg attempt < 40 40 − 49 ≥ 50 pct rank π̂ π̂M

Mason Crosby 37.47 155/168 56/76 23/50 0.80 56 0.81 0.81
Jason Elam 36.85 200/214 93/130 26/42 0.83 34 0.81 0.81
Nick Novak 36.81 81/92 31/41 12/20 0.81 47 0.81 0.81
John Carney 35.25 213/236 77/108 11/18 0.83 31 0.81 0.81
Mike Nugent 36.42 132/145 57/76 10/24 0.81 43 0.81 0.81
Alex Henery 36.07 52/57 22/29 3/8 0.82 40 0.81 0.81
Matt Prater 37.92 107/115 43/66 25/35 0.81 48 0.81 0.81
Cairo Santos 35.10 17/18 7/10 1/2 0.83 27.5 0.81 0.81
David Akers 36.34 292/318 110/159 27/52 0.81 45 0.81 0.81
Doug Brien 36.93 80/90 48/61 7/17 0.80 51 0.81 0.81
Rian Lindell 36.09 209/226 75/111 23/42 0.81 49 0.80 0.81
Al Del Greco 35.61 48/52 20/30 1/2 0.82 37 0.80 0.81
Jeff Reed 34.94 169/183 54/79 8/17 0.83 33 0.80 0.81
Graham Gano 37.27 77/89 40/54 12/20 0.79 59 0.80 0.81
Caleb Sturgis 37.72 36/39 14/20 6/13 0.78 61.5 0.80 0.81
Neil Rackers 37.10 183/203 68/95 26/53 0.79 60 0.80 0.80
Jay Taylor 34.67 3/4 1/1 1/1 0.83 27.5 0.80 0.80
Olindo Mare 35.54 238/267 89/117 19/41 0.81 42 0.80 0.80
Morten Andersen 35.73 136/150 53/77 8/16 0.81 46 0.79 0.80
David Buehler 38.15 13/16 8/11 4/6 0.76 72 0.79 0.80
Mike Hollis 35.89 85/98 36/51 7/11 0.80 54.5 0.79 0.80
Clint Stitser 30.75 6/7 1/1 0/0 0.88 6 0.78 0.80
Paul Edinger 38.40 74/92 49/68 16/24 0.76 73 0.78 0.80
Martin Gramatica 37.20 114/128 37/63 19/29 0.77 63 0.78 0.80
Lawrence Tynes 34.80 153/173 42/60 11/21 0.81 44 0.78 0.80
Norm Johnson 37.00 28/32 17/22 1/6 0.77 68 0.77 0.79
Kris Brown 37.02 167/194 76/111 18/35 0.77 67 0.77 0.79
Todd Peterson 35.56 113/131 43/59 8/17 0.79 58 0.77 0.79
Pete Stoyanovich 36.21 36/40 15/26 3/4 0.77 64.5 0.77 0.79
Billy Cundiff 36.39 136/156 52/73 9/29 0.76 69 0.76 0.79
John Hall 36.99 128/144 51/84 10/23 0.75 74 0.76 0.79
Brett Conway 36.30 49/59 20/27 5/11 0.76 70 0.76 0.78
Bill Gramatica 35.69 25/27 10/15 2/6 0.77 66 0.76 0.78
Cary Blanchard 37.44 29/34 13/21 3/6 0.74 78 0.75 0.78
Steve Christie 35.25 105/121 35/59 10/17 0.76 71 0.74 0.78
Dave Rayner 37.41 42/51 19/29 5/11 0.73 81 0.74 0.78
Chris Jacke 37.27 25/28 6/11 1/5 0.73 80 0.74 0.77
John Potter 34.75 2/2 1/1 0/1 0.75 75.5 0.73 0.77
Todd France 33.78 5/5 2/4 0/0 0.78 61.5 0.73 0.77
Brad Daluiso 33.76 40/46 13/23 1/1 0.77 64.5 0.72 0.77
Craig Hentrich 48.50 2/2 2/3 1/5 0.50 104.5 0.72 0.77
Cedric Oglesby 30.00 4/5 1/1 0/0 0.83 27.5 0.72 0.76

kickers. Empirical success rates will tend to involve
more attempts from high-frequency kickers, who tend
to be better kickers.

4.3. Big legs

The capacity to kick long-distance field goals is
of particular interest to many football fans as well
as NFL team management. One way to enrich the
model to allow rankings among kickers to vary across
distance is to expand the degree of the polyno-
mial to quadratic. Using L and Q superscripts for
the linear and quadratic kicker effects leads to the

following representations of the generalized linear
model:

log{− log(1 − πj)} = β0 + (βL
1 xj1 + · · · + βL

Kxjk)dj

+(βQ

1 xj1 + · · · + β
Q
Kxjk)d2

j

and

log{− log(1 − πk(d)} = β0 + βL
k d + β

Q

k d2.

For this investigation, attention is restricted to the
K′ = 54 veteran kickers with at least 100 attempts in
their careers, since small sample sizes present greater
separability issues for fitting quadratic models. A
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Table 9

Ranking by shrinkage estimate over distribution of all kicks, continued

Kicker avg attempt < 40 40 − 49 ≥ 50 pct rank π̂ π̂M

Richie Cunningham 35.03 35/43 12/18 1/4 0.74 77 0.71 0.76
Jeff Chandler 34.60 16/18 6/10 0/2 0.73 79 0.70 0.76
Wade Richey 35.36 58/69 19/35 3/7 0.72 82 0.70 0.75
Tim Seder 35.95 30/36 14/23 0/3 0.71 84 0.70 0.75
Aaron Elling 36.75 14/17 4/7 1/4 0.68 90 0.68 0.75
Eddie Murray 35.65 12/14 4/8 0/1 0.70 86 0.68 0.75
Doug Pelfrey 35.98 29/36 7/15 3/6 0.68 88 0.67 0.74
Taylor Mehlhaff 32.75 2/3 1/1 0/0 0.75 75.5 0.67 0.74
Michael Husted 35.93 32/44 14/21 1/4 0.68 89 0.66 0.74
Brian Gowins 35.83 3/3 1/2 0/1 0.67 93.5 0.66 0.73
Jose Cortez 34.07 41/50 11/24 1/1 0.71 85 0.65 0.73
Steve Lindsey 32.71 3/5 2/2 0/0 0.71 83 0.65 0.73
Greg Davis 36.68 11/15 6/11 1/2 0.64 97 0.64 0.73
Jeff Jaeger 34.85 19/23 2/9 2/2 0.68 91 0.64 0.73
Jon Hilbert 37.39 9/10 2/8 0/0 0.61 99 0.63 0.72
Kris Heppner 35.00 8/11 2/2 0/2 0.67 93.5 0.63 0.72
Justin Medlock 34.83 6/7 2/4 0/1 0.67 93.5 0.63 0.72
Chris Boniol 35.30 19/24 6/14 1/2 0.65 96 0.63 0.72
Brandon McManus 34.85 7/8 2/3 0/2 0.69 87 0.62 0.72
Jake Arians 37.90 8/10 4/11 0/0 0.57 102 0.61 0.71
Seth Marler 35.88 14/19 5/12 1/2 0.61 100 0.59 0.70
James Tuthill 35.06 7/10 2/5 1/1 0.63 98 0.59 0.70
Ola Kimrin 36.40 5/6 1/3 0/1 0.60 101 0.59 0.70
Ricky Schmitt 33.33 2/3 0/0 0/0 0.67 93.5 0.59 0.70
Owen Pochman 41.59 4/9 4/5 0/3 0.47 106 0.58 0.69
Hayden Epstein 35.33 5/6 0/2 0/1 0.56 103 0.52 0.67
Nate Freese 38.14 3/3 0/4 0/0 0.43 107 0.45 0.63
Shane Andrus 38.20 2/3 0/2 0/0 0.40 108 0.45 0.63
Michael Koenen 44.00 2/5 0/1 2/8 0.29 111 0.45 0.63
Scott Blanton 39.33 1/2 0/1 0/0 0.33 109.5 0.42 0.62
Aaron Pettrey 29.25 2/3 0/1 0/0 0.50 104.5 0.32 0.56
Toby Gowin 34.67 1/2 0/1 0/0 0.33 109.5 0.30 0.56

comparison of the model with kicker-specific slopes
nested within the quadratic model is not signifi-
cant using this restricted dataset (χ2 = 63.3, df =
54, p = 0.181). This non-significance could possi-
bly be explained by selection bias, as kickers with
many attempts will all tend to be good enough to
remain in the league. While not significant, there
is a preponderance of kickers for whom the esti-
mated quadratic coefficients have small p-values,
suggesting that there are some kickers for whom
quadratic coefficients are non-zero. In fact the aver-
age p-value for these 54 tests of the form β

Q
k = 0 is

0.16 providing anecdotal evidence of curvature. For
one further bit of evidence, a comparison of nested
models based on the logit link function is weakly sig-
nificant, (χ2 = 72.8, df = 54, p = 0.0450), though
the fit is not as good as that provided by
the CLL.

Table 10 enables simultaneous inspection of kick-
ers who have estimated success probabilities that
rank highly (top 20) in at least one of the three dis-
tances, 35, 45 or 55 yards. Entries in the table are

sorted by the success probability estimate at 55 yards,
π̂k(55). Estimates at d = 35, 45 are also given along
with ranks which enable identification of kickers who
seem to have strengths at either medium or long
distances (or both). While some kickers are accu-
rate from any distance, for example current kickers
Bailey, Tucker, Walsh, and Barth, others have a decent
shot at making long kicks but can be less accurate
than is desired at short distances, for example Edinger
and Hollis. Lastly are the kickers who rarely miss
from intermediate distances, but are not estimated
to have a big enough leg to have much more than
a coin flip chance of success on long field goals,
for example Gould, Kasay, and Stover. For compar-
ison with observed data, the last three columns give
empirical success frequencies after binning kicks into
10-yard intervals surrounding d = 35, 45, 55 yards.
Clustering can be used to group kickers, based on
their trivariate estimated success probability at the
three distances, 35,45 and 55 yards, such that within
groups, kickers are similar. The default hierarchi-
cal clustering algorithm implemented by SAS PROC
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Table 10

Rankings of kickers among the top 20 at three different distances: 35, 45, and 55 yards. The columns include career span within the data
set, ranks at each of the three distances, success probability shrinkage estimate at each of the three distances, and the empirical success

probability at three distance ranges 30-39, 40-49, and 50-59 yards. Dashed lines separate clusters

career ranks π̂k(d) empirical success
Kicker span d = 35 45 55 35 45 55 30 − 39 40 − 49 50 − 59

Garrett Hartley 08-14 46 11 1 0.85 0.75 0.62 27/35 28/34 6/8
Dan Bailey 11-14 3 2 2 0.91 0.80 0.60 38/40 35/39 17/25
Justin Tucker 12-14 1 1 3 0.92 0.81 0.60 32/33 26/30 14/19
Paul Edinger 00-05 53 38 4 0.82 0.72 0.59 35/51 49/68 16/24
Stephen Gostkowski 06-14 22 8 5 0.88 0.76 0.59 94/105 65/85 14/18
Blair Walsh 12-14 9 3 6 0.89 0.78 0.58 30/33 19/24 17/23
Connor Barth 08-14 7 4 7 0.90 0.77 0.57 33/37 42/51 13/20
Rob Bironas 05-13 15 6 8 0.88 0.76 0.57 75/83 71/92 23/31
Phil Dawson 99-14 31 15 9 0.87 0.75 0.56 113/130 85/115 35/48
Matt Bryant 02-14 19 13 10 0.88 0.75 0.56 101/110 73/95 19/33
Mike Hollis 98-02 49 37 11 0.84 0.72 0.55 43/51 36/51 7/11
Matt Prater 07-14 33 19 12 0.87 0.74 0.55 52/57 43/66 24/34
Steven Hauschka 08-14 8 7 13 0.90 0.76 0.54 52/55 40/49 9/15
Nick Folk 07-14 41 29 14 0.86 0.73 0.54 66/74 57/78 19/32
Jason Hanson 98-12 10 9 15 0.89 0.76 0.54 107/118 108/141 43/67
Graham Gano 09-14 43 32 16 0.85 0.72 0.54 31/40 40/54 12/19
Adam Vinatieri 98-14 26 18 17 0.88 0.74 0.54 150/178 135/173 26/45
Josh Brown 03-14 13 14 18 0.89 0.75 0.54 91/100 81/111 35/54
Shaun Suisham 05-14 32 22 19 0.87 0.74 0.53 66/78 76/94 6/18
Jay Feely 01-14 40 30 20 0.86 0.73 0.53 121/141 95/130 18/32
Dan Carpenter 08-14 4 5 21 0.90 0.77 0.53 52/55 65/82 19/32
Jeff Wilkins 98-07 23 20 22 0.88 0.74 0.52 74/82 67/100 28/40
Mike Vanderjagt 98-06 12 16 24 0.89 0.75 0.52 69/76 71/95 15/22
Sebastian Janikowski 00-14 14 17 27 0.88 0.74 0.52 116/129 111/148 46/79
Jason Elam 98-09 18 21 30 0.88 0.74 0.51 94/106 93/130 25/39
Robbie Gould 05-14 5 10 33 0.90 0.75 0.51 81/90 74/100 17/22
Ryan Longwell 98-11 20 27 34 0.88 0.73 0.51 120/135 97/133 24/40
Shayne Graham 01-14 16 23 36 0.88 0.74 0.50 97/106 69/89 15/29
Joe Nedney 98-10 11 28 44 0.89 0.73 0.48 69/77 62/88 17/31
Nate Kaeding 04-12 17 31 45 0.88 0.72 0.48 50/54 51/73 10/19
John Kasay 98-11 2 12 47 0.91 0.75 0.48 82/87 88/114 32/60
Stover 98-09 6 33 52 0.90 0.72 0.44 101/111 97/131 9/20

CLUSTER suggests the existence of three clusters,
and that cluster assignment is mostly determined by
π̂(55). The first 8 kickers in Table 9 form a “big leg”
cluster, the last four kickers form the “accurate but
no leg” cluster, and the remainder fall somewhere in
between. The means of the estimated success proba-
bilities for these three groups are plotted against yards
in Fig. 6. This does suggest that there may be some-
what of a trade-off between a “big leg” and accuracy
at closer ranges.

Table 13 helps quantify the variance-reducing
property of shrinkage estimation by comparison of
the coefficient of variation among kickers with max-
imum likelihood (no shrinkage) estimates. The table
gives results for both linear and quadratic fits, with
diminished coefficient of variation for shrinkage esti-
mates, particularly for shorter attempts.

Another way to rank kickers is to consider big-
legs and stadium effects and shrinkage estimation all
together. Stadium effects can bias a ranking and by

including them in the model, together with quadratic
distance effects, one can attempt to rank kickers on
an even footing. The model is then given by

log{− log(1 − πj)} = β0 + (βL
1 xj1 + · · · + βL

Kxjk)dj

+ (βQ
1 xj1 + · · · + β

Q
Kxjk)d2

j

+ βS
1 sj1 + · · · + βS

SsjS

where βS
1 , . . . , βS

S and sj1, . . . , sjS denote stadium
effects and indicator variables for kick j, respec-
tively. The midpoint shrinkage strategy can again be
used to rank kickers, resulting in Table 12. This rank-
ing shuffles the kickers modestly from that in Table
11 and is more fair in the sense that it attempts to
adjust for stadium effects. If these trivariate shrinkage
estimates at d = 35, 45, 55 are again clustered, then
only two clusters are recommended by the procedure.
All of the members of the big-leg club are retained
and three new kickers are admitted: Mike Hollis,
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Table 11

Stadium effects and success frequencies. The columns include number of games, average distance, attempts per game, empirical success
rates as counts and as a percentage and model-based success probability estimate (π̂) and standard error

Franchise Stadium games d̄ att/g made/att pct π̂ Std.err.

Colts Lucas Oil Stadium 62 37.4 3.9 217/244 0.89 0.88 0.03
Lions Pontiac Silverdome 32 38.2 4.0 109/127 0.86 0.87 0.04
Broncos Sports Authority Field at Mile High 119 37.9 3.7 375/442 0.85 0.84 0.02
Vikings Mall of America Field 131 37.0 3.7 408/483 0.84 0.84 0.02
Lions Ford Field 107 38.1 3.8 344/406 0.85 0.83 0.02
Giants/Jets MetLife Stadium 82 36.4 3.8 270/313 0.86 0.83 0.03
Ravens M&T Bank Stadium 141 36.2 4.1 494/572 0.86 0.83 0.02
Cowboys Texas Stadium 90 37.0 3.8 267/342 0.78 0.82 0.03
Eagles Lincoln Financial Field 103 36.0 3.7 324/383 0.85 0.81 0.03
Rams The Dome at America’s Center 140 38.6 3.9 454/551 0.82 0.80 0.02
Saints Mercedes-Benz Superdome 134 36.6 3.7 410/492 0.83 0.80 0.02
Cowboys AT&T Stadium 51 37.6 3.8 167/196 0.85 0.79 0.04
Texans NRG Stadium 107 37.8 3.8 327/403 0.81 0.79 0.03
Falcons Georgia Dome 141 36.4 3.7 433/525 0.82 0.79 0.02
Panthers Bank of America Stadium 140 36.8 3.7 425/519 0.82 0.78 0.02
Eagles Veterans Stadium 44 36.5 3.8 131/167 0.78 0.78 0.04
Seahawks CenturyLink Field 114 36.6 3.8 361/433 0.83 0.78 0.03
Cardinals Sun Devil Stadium 64 38.0 3.6 173/231 0.75 0.78 0.03
Chiefs Arrowhead Stadium 138 36.7 3.9 435/543 0.80 0.77 0.02
Chargers Qualcomm Stadium 141 35.9 3.7 427/525 0.81 0.77 0.02
Buccaneers Raymond James Stadium 140 37.3 3.7 417/515 0.81 0.77 0.02
Dolphins Hard Rock Stadium 142 36.9 4.1 470/579 0.81 0.77 0.02
Jaguars EverBank Field 114 37.3 3.6 323/410 0.79 0.77 0.03
Colts RCA Dome 87 36.0 4.0 282/345 0.82 0.76 0.03
49ers Candlestick Park 132 35.8 3.8 403/500 0.81 0.76 0.02
Bengals Paul Brown Stadium 123 36.0 3.8 375/462 0.81 0.74 0.03
Patriots Gillette Stadium 120 35.3 3.7 364/441 0.83 0.74 0.03
Giants/Jets Giants Stadium 199 34.9 3.7 594/740 0.80 0.74 0.02
Raiders Oakland-Alameda County Coliseum 140 37.8 4.1 441/573 0.77 0.74 0.02
Titans Nissan Stadium 132 36.8 3.8 400/498 0.80 0.74 0.03
Bills New Era Field 129 35.3 3.9 403/504 0.80 0.74 0.03
Packers Lambeau Field 146 36.4 3.8 431/548 0.79 0.73 0.03
Cardinals University of Phoenix Stadium 77 36.8 4.0 248/311 0.80 0.73 0.03
Patriots Foxboro Stadium 33 35.6 4.3 111/143 0.78 0.73 0.04
Steelers Heinz Field 123 35.9 3.6 350/445 0.79 0.72 0.03
Browns FirstEnergy Stadium 128 35.1 3.8 388/482 0.80 0.71 0.03
Redskins FedExField 138 36.3 3.7 390/514 0.76 0.71 0.02
Bears Soldier Field 134 35.9 3.7 382/495 0.77 0.69 0.03

Matt Bryant, and Phil Dawson. These three kickers
provide some interpretation of stadium effects. Esti-
mates for both Hollis and Dawson are adjusted
upward due to the fact that these kickers kicked
for teams with tougher stadiums: Alltell Stadium
and Cleveland Browns Stadium, respectively. Bryant
kicked for teams in the Georgia Dome and Raymond
James Stadium, both of which have nearly average
stadium effects and his estimates are barely adjusted
at all. He makes it into the big-leg club because the
clustering criteria changed slightly with the adjusted
estimates.

4.4. Non-stationarity

The analyses in this paper cover a wide time span.
Kicker ability appears to be changing, especially

in the last 10 years, with improving accuracy and
experience among kickers (Clark et al., 2013). The
frequencies of long field goal attempts are also
increasing. Figure 9 shows the log of attempt frequen-
cies against year, with separate plotting characters
and colors for each distance, rounded to the nearest
five yards. The log-scale is better for visualizing the
increase in frequencies. In fact, the log of the fre-
quency of kicks between 53 and 57 yards, denoted
in the graph as “55”, and also of kicks between 48
and 52 yards, denoted as “50”, appear to be linearly
increasing with season. The figure overlays lines
using estimated coefficients from Poisson regressions
of frequency on year, separate for each 5-yard dis-
tance interval, with the natural log-link function for
the generalized linear model. The slopes are signifi-
cant for distances of 50, 55, and 60 yards.
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Table 12

Rankings of kickers among the top 20 at three different distances: 35, 45, and 55 yards, including adjustment for stadium effects.
The columns include career span within the data set, ranks at each of the three distances, success probability shrinkage estimate at each of the
three distances, and the empirical success probability at three distance ranges 30-39, 40-49, and 50-59 yards. Dashed lines separate clusters

career ranks π̂k(d) empirical success
Kicker span d = 35 45 55 35 45 55 30 − 39 40 − 49 50 − 59

Garrett Hartley 08-14 48 15 1 0.85 0.75 0.62 27/35 28/34 6/8
Dan Bailey 11-14 4 2 2 0.91 0.80 0.61 38/40 35/39 17/25
Stephen Gostkowski 06-14 23 8 3 0.88 0.77 0.59 94/105 65/85 14/18
Paul Edinger 00-05 53 33 4 0.83 0.73 0.59 35/51 49/68 16/24
Justin Tucker 12-14 1 1 5 0.92 0.81 0.58 32/33 26/30 14/19
Connor Barth 08-14 6 4 6 0.90 0.78 0.57 33/37 42/51 13/20
Rob Bironas 05-13 12 6 7 0.89 0.77 0.57 75/83 71/92 23/31
Blair Walsh 12-14 8 7 8 0.90 0.77 0.57 30/33 19/24 17/23
Mike Hollis 98-02 41 21 9 0.86 0.74 0.56 43/51 36/51 7/11
Matt Bryant 02-14 25 11 10 0.88 0.76 0.56 101/110 73/95 19/33
Phil Dawson 99-14 16 10 11 0.89 0.76 0.55 113/130 85/115 35/48
Graham Gano 09-14 43 31 12 0.86 0.73 0.55 31/40 40/54 12/19
Shaun Suisham 05-14 26 16 13 0.88 0.75 0.54 66/78 76/94 6/18
Steven Hauschka 08-14 7 9 14 0.90 0.76 0.53 52/55 40/49 9/15
Dan Carpenter 08-14 5 5 15 0.91 0.77 0.53 52/55 65/82 19/32
Jay Feely 01-14 36 25 16 0.87 0.74 0.53 121/141 95/130 18/32
Josh Brown 03-14 21 17 17 0.88 0.75 0.53 91/100 81/111 35/54
Nick Folk 07-14 45 38 18 0.86 0.72 0.53 66/74 57/78 19/32
Adam Vinatieri 98-14 31 23 19 0.88 0.74 0.53 150/178 135/173 26/45
Robbie Gould 05-14 2 3 20 0.91 0.78 0.52 81/90 74/100 17/22
Sebastian Janikowski 00-14 11 13 21 0.89 0.76 0.52 116/129 111/148 46/79
Jeff Reed 02-10 17 18 24 0.88 0.74 0.52 86/94 54/79 8/16
Jason Hanson 98-12 22 20 25 0.88 0.74 0.52 107/118 108/141 43/67
Mike Vanderjagt 98-06 9 14 27 0.90 0.75 0.52 69/76 71/95 15/22
Shayne Graham 01-14 14 19 34 0.89 0.74 0.50 97/106 69/89 15/29
Ryan Longwell 98-11 20 30 37 0.88 0.73 0.50 120/135 97/133 24/40
Mike Nugent 05-14 19 32 40 0.88 0.73 0.49 65/77 57/76 10/24
Mason Crosby 07-14 15 28 41 0.89 0.73 0.49 77/87 56/76 23/49
Joe Nedney 98-10 10 22 43 0.90 0.74 0.49 69/77 62/88 17/31
Nate Kaeding 04-12 18 36 46 0.88 0.73 0.48 50/54 51/73 10/19
John Kasay 98-11 3 12 48 0.91 0.76 0.47 82/87 88/114 32/60
Matt Stover 98-09 13 45 54 0.89 0.71 0.43 101/111 97/131 9/2

5. Discussion

With the goal of variance-reduction akin to that
achieved by Efron and Morris (1975) and Brown
(2008) in the prediction of end-of-season batting
averages, we presented a flexible framework for
the construction of shrinkage estimators of field
goal success probabilities. This framework allows
for model-based kicker-specific maximum likeli-
hood estimates to be balanced with model-free
empirical frequencies aggregated over all kickers.
For the model-based estimator, various link func-
tions were assessed using maximum likelihood,
Hosmer-Lemeshow statistics and restrictions on data
motivated by possible selection bias. The comple-
mentary log-log function was selected by all criteria.
Findings from several choices for the weight func-
tions of the model-based estimate were presented,
including constant, functional, or distribution-based

weights, but our investigation was by no means
exhaustive. We recommend the midpoint estimator
which weights the two components equally on the
basis of simplicity and generally good performance
as measured by the Hosmer-Lemeshow statistic under
cross validation. Interested readers are invited to give
other weighting schemes a try. In particular, it seems
that low-frequency kickers ought to be estimated
using more shrinkage toward the empirical frequency.
Since these kickers constitute a comparatively small
fraction of the data set, they do not carry much weight
as we assess the performance of shrinkage estimators.
It is reasonable that in some personnel decisions, they
should carry more weight, and a different shrinkage
approach and method of assessment may be more
appropriate.

Another limitation of the study has to do with failed
attempts that are not the fault of the kicker, or perhaps
partially the fault of the kicker. If a snap or hold is bad,
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Table 13

Summary statistics among estimated success probabilities for 54 veteran kickers

Statistic Model Method 40 45 50 55 60 65

Mean Linear ML 0.80 0.71 0.62 0.54 0.45 0.38
shrinkage 0.81 0.73 0.64 0.52 0.32 0.19

Quadratic ML 0.81 0.72 0.62 0.52 0.43 0.34
shrinkage 0.81 0.74 0.64 0.51 0.30 0.17

Coef. Linear ML 5.93 8.25 10.77 13.41 16.13 18.87
Var. Shrinkage 2.92 4.01 5.26 6.90 11.50 18.87

Quadratic ML 6.36 7.94 10.60 15.31 22.69 33.11
Shrinkage 3.15 3.88 5.16 7.77 15.89 33.11
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Fig. 9. Log of attempt frequencies over season separated by dis-
tances rounded to the nearest five yards starting at 40 yards. Lines
are linear regressions of log-transformed attempt frequencies on
year.

but an attempt is made and missed, it may appear in
a verbal recap, but appears in the play-by-play sim-
ply as “no good.” Our model does not account for
this type of event. Excluding blocked kicks is also
problematic as it is possible that longer attempts may
be more likely to be blocked by lesser kickers, so
that these failed attempts contain information about
kicker ability.

Using the approach of Berry and Berry (1985)
to average success probability estimates over the
observed distribution of attempt distances, rankings
for kickers were provided. Interestingly several cur-
rent kickers came out on top. In addition to this
overall ranking, distance was fixed at several lengths,
d = 35, 45 and 55 yards, corresponding roughly to
estimated success probabilities for elite (top 20) kick-
ers in the range of 0.9, 0.8, and 0.6 respectively.
These estimates are based on a version of the model
that expands the degree of polynomial dependence
on distance to be quadratic. Presentation of the best

kickers side-by-side enables investigation of kick-
ers who have “big legs,” with a decent shot at long
kicks, in comparison to those who are “automatic” at
medium distances. An attempt to refine these rank-
ings was made by adding stadium effects, which
were found to be highly significant. The estimated
marginal (averaged over kickers) means for stadiums
with adequate sample sizes were back-transformed
to give a ranking of the toughest venues in which to
kick.

General managers have made kicker personnel
changes with surprising frequency, perhaps overre-
acting after the sting of a loss which involved a missed
field goal. Let us consider the case of Garrett Hartley
in more detail. Hartley began his career with the New
Orleans Saints in 2008 by making all 13 of his field
goal attempts. The following year he made all but
two field goal attempts, with the misses coming from
58 and 37 yards. As mentioned in Section 1, in 2010
Hartley missed a 29 yard attempt in overtime in a
week 4 loss and the Saints chose to sign John Carney.
Carney proceeded to make 5 out of 6 field goals for
the two games he replaced Hartley, missing from 29
yards in week 5, the exact same yardage which pre-
cipitated Hartley’s demotion. So the following game,
Carney was demoted in favor of Hartley and Hartley
proceeded to make 16 of the 18 remaining kicks he
attempted in the season. The frequency of personnel
changes among kickers, averaging more than 3 mid-
season cuts per year, is surprising in light of the small
number of total kickers over the 16 year period of this
study. Though kickers may lose their jobs, many find
employment shortly after termination, with a small
number moving on through free agency. Whether the
high turnover is a result of misunderstanding of the
sampling variability inherent in estimating success
probabilities from a small number of binary trials, or
due to reaction to fan hostility is unclear.

Over the last five years, there has been an increase
in the distances at which field goals are attempted,
most likely due to increases in kicker abilities.
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Attempting to model this increase could lead to
improvements in the estimation of success probabil-
ities and would be an excellent avenue for further
study. Another potentially interesting topic that could
be investigated would be the effect of age on elite
kickers who have exhibited longevity in the league.
Here it is implicitly assumed to be constant, but we
may wonder if it is reasonable to expect the same
degree of accuracy at all stages of a kicker’s career.
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