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The relationship of excitement, importance
and entropy to the efficiency of statistical
hypothesis tests
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Abstract. Sports scoring systems can be seen as statistical hypothesis tests, and the tennis scoring system in particular can
be viewed as a particular sequential 2-sample binomial test. Thus, the excitement of a point (or observation) within a scoring
system can be seen to have a place within hypothesis testing. The 2-sample binomial tests known to be the most efficient are
shown to have related characteristics with respect to the measures of excitement and importance in sport and with Shannon
entropy in information theory. This paper also includes several new, interesting and quite general scoring systems theorems.
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1. Introduction

Miles (1984), in his very elegant paper, showed
that a scoring system in sport could be considered to
be identical to a hypothesis test in statistics. In partic-
ular, he considered tennis which is an application of
comparing two binomial probabilities. In tennis there
are essentially two types of points, a-points (player
A serves) and b-points (B serves), as described for
example in Pollard (1983). Thus, tennis scoring is
a ‘bi-points’ scoring system. Player A is the better
player if pa > pb, where pa is player A’s probability
of winning a point on his service and pb is player
B’s probability of winning a point on his service.
Assuming pa and pb are unknowns and the objective
of playing a match is to efficiently identify the bet-
ter player by reducing as much as possible the error
probability (the better player loses or worse player
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wins) for a given expected number of points played,
Miles set up symmetrical statistical hypotheses, for 0
< pb’ < pa’ < 1,

Ho: (pa, pb) = (pa’, pb’) (or A better than B) and
H1: (pa, pb) = (pb’, pa’) (or B better than A),

and considered ‘fair’ bipoints scoring systems with
sensible properties. He called these scoring systems
‘biformats’. Thus, a scoring system is a statistical test,
and a biformat is a statistical test of the above hypoth-
esis in which the two types of error are equal, i.e.
� = �. Thus, the tennis scoring system is essentially
a statistical test of the above hypothesis.

Miles (1984) also set up unipoints for the situation
where serving is essentially neither an advantage or a
disadvantage, as is typically the situation in squash.
In unipoints, player A is the better player if p > 0.5,
where p is player A’s probability of winning a point.

Returning to bipoints, Miles (1984) used ‘point-
pairs’ (consisting of an a-point and a b-point) to set
up a ‘standard family of biformats’ Wn(point-pairs)
to represent a scoring system in which the winner
is the first player to win n more point-pairs than his
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opponent (or equivalently 2n points). This standard
family of biformats was given an efficiency of unity.
He showed that the efficiency ρ of a general bifor-
mat with key characteristics P and � relative to this
standard family is given by

ρ = (2 (P − Q) ln (P/Q)) /

(μ (pa − pb) ln (paqb/pbqa)) (1)

where qa = 1 – pa, qb = 1 – pb, P is the probability
player A wins, Q = 1 – P, and � is the expected num-
ber of points played. Thus, for given (pa, pb), the
efficiency is a function of P and �.

A way to thinking about the efficiency of scoring
systems is this . . . if you are given two scoring sys-
tems with the same value of � for a given pair (pa,
pb), then the more efficient scoring system at (pa, pb)
is the one with the larger value of P (and hence the
larger value of P/Q).

Miles (1984) setup families of scoring systems
based on alternating (AL), play-the-winner (PW) and
play-the-loser (PL) service exchange mechanisms,
and which used the Wn stopping rule in which the
winner is the first player to be n points ahead of his
opponent. Play-the-winner, for example, is the ser-
vice exchange mechanism in which a point won by
player A is followed by an a-point, and a point won
by player B is followed by a b-point. Thus, he set up
the scoring systems W1(WnALa, WnALb) (n = 1, 2,
3, . . . ) which consist of two parts. Play starts with
an a-point (player A serves), and service alternates
until one player is n points ahead, when that part of
play ceases and the second part of the scoring sys-
tem begins with a b-point, and points again alternate
until one player is n points ahead. If this player is the
same player as the one who was n points ahead on
the first part of the play, then that player is the win-
ner. Otherwise, the scoring system starts over again.
Although this seems complicated, it isn’t. The two
parts of the scoring system are needed to create fair-
ness. Miles (1984) showed that this scoring system
had unit efficiency, and Pollard (1986, 1992) noted
that it was in fact stochastically identical to Wn(point-
pairs). Using the same two-part structure but with the
play-the-loser service exchange mechanism in which
a point won by player A is followed by a b-point
and a point won by B is followed by an a-point,
Miles (1984) set up the scoring systems W1(WnPLa,
WnPLb) (n = 2, 3, 4, . . . ). He showed that they have
efficiencies very slightly greater than unity when pa
+pb >1, and correspondingly that the play-the-winner
(PW) scoring systems W1(WnPWa, WnPWb) (n = 2,

3, 4, . . . ) have efficiencies less than unity when pa +
pb >1. By identifying (n-2) “partial-PL” Wn scor-
ing systems “between” W1(WnPLa, WnPLb) and
W1(WnALa, WnALb) when n = 3, 4, 5, . . . , Pollard
(1986, 1992) showed that the (full) PL family of scor-
ing systems W1(WnPLa, WnPLb) was in fact the most
efficient scoring system possible (i.e. was optimally
efficient) when pa + pb >1 (i.e. the tennis context, for
example, where serving is an advantage). The corre-
sponding PW family W1(WnPWa, WnPWb) (n = 2,
3, 4, . . . ) is optimal when pa + pb < 1 (i.e. the
volleyball context, for example, where serving is a
disadvantage).

Pollard (1986, 1992) noted that the above optimal
biformats for the 2-sample binomial test when α = β

(i.e. the symmetric case) are such that the biformats
(or tests) pass through non-symmetrical situations
and yet the 1-step PL (or PW) rule remains optimal.
These non-symmetrical situations, as a starting point,
correspond to the α /= β case in hypothesis testing
and the handicap situation in sport. Thus, using the
principle of optimality (dynamic programming), he
concluded that the PL (PW) rule used with W(n1,
n2) systems is optimally efficient for the 2-sample
binomial statistical test when α /= β provided pa +
pb >1 (pa + pb < 1). Note that here W(n1, n2) rep-
resents the stopping rule for the handicap sporting
situation in which player A needs to win n1 more
points than player B in order to win, and player
B needs to win n2 more points than player A in
order win.

It has remained a challenge to describe why these
PL (PW) rules lead to optimal tests when used with
Wn stopping rules. Further, it would appear that a
greater insight into why such tests are very efficient or
optimal might give researchers an increased capacity
in designing very good statistical tests for other situ-
ations. Pollard (1986, pp.30 and 1992, pp.282) gave
an intuitive explanation for the super-efficiency of
these PL and PW scoring systems. It was that ‘in each
case, under the most efficient rule, a greater number of
points with the more variable (Bernoulli) distribution
is expected to be selected; and this is an approach
used in efficient estimation theory’. Pollard (1986,
1990) gave an alternative explanation for the case in
which the value of n in the above PL and PW scoring
systems is very large, and this explanation is outlined
in the following paragraph.

Pollard (1990, pp.191) described ‘a method
for decomposing many sequential probability ratio
[statistical] tests [including the PL and PW sys-
tems described above] into smaller independent
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components called “modules”. A function of some
characteristics of modules can be used to determine
the asymptotically most efficient of a set of statistical
tests...’, and he ‘used the “module” method to give an
explanation for the super-efficiency of the play-the-
winner (when pa + pb < 1) and play-the-loser rules
(when pa + pb >1) in two sample binomial sampling’.
In the context of Wm systems and denoting player A
as the better player, he defined the random variable
S as the increase (or shift) in player A’s score during
one module and the random variable D as the dura-
tion (i.e. number of points played) of the module. He
compared W1(WmPLa, WmPLb) and W1(WmPWa,
WmPWb) when p = (pa + pb)/2, q = 1 – p, m = nq for
the PL case, m = np for the PW case, and n is large,
noting that these two systems have the same asymp-
totic durations. The value of the variance of S, Var(S)
for the PL module was then ‘scaled’ so that it can
be directly compared with the value of Var(S) for
the PW module. The purpose of this scaling was to
allow for (i) the different values of E(D) for the two
modules, and (ii) the different values of m in Wm
for the two systems. He concluded (pp.197) that ‘for
the same asymptotic expected durations [of the two
Wm systems], the smaller scaled (or “relative”) vari-
ance for the PL module (when pa /= pb and pa +
pb >1) results in the better player having a higher
probability of winning and hence the PL system has
greater efficiency’. Using this ‘module’ approach to
the asymptotic case he also concluded that if pa +
pb < 1 and pa /= pb, the PW structure is the more
efficient.

The major aim of this paper is to give further
insights into why the PL or the PW structure, when
combined with the Wn stopping rule, produces opti-
mally efficient scoring systems. Unlike the results
described in the previous paragraph, in this paper we
do not restrict consideration to the situations in which
the n in Wn is very large. We gain insight into this
by considering the ‘importance’ of a point within a
scoring system, the ‘excitement’ of a point within a
scoring system, and the ‘information’ or ‘entropy’ of
a Bernoulli trial. These concepts are described in the
following paragraphs.

In an elegant paper Morris (1977) defined the
‘importance’ of a point within a game as the prob-
ability player A wins the game given he wins that
point minus the probability he wins the game given
he loses the point. Pollard (1986, 1992) noted that the
very efficient Wn scoring systems (using AL, PL and
PW) had equally important points when the players
were equal (pa = pb).

In information theory, Shannon (1948) defined the
entropy of a Bernoulli observation with probability p
to be equal to pln(1/p) + (1 – p)ln(1/(1 – p)).

In the paper by Pollard (2016) a mathematical
measure for the excitement of a point in various
sports was devised. In this paper we give a sec-
ond excitement measure, similar in concept but
one based on squared values rather than absolute
values.

Pollard (1986, 1992) considered two equal players
and found an expression for the increased probabil-
ity player A has of winning a game given that he
increases his probability of winning the point in state
i by δi (i = 1, 2, 3, . . . ). He showed that player A’s
increased probability of winning the game is given
by �P = �Ni*Ii*δi, where Ii is the importance of the
point at state i when the players are equal and Ni is the
expected number of times state i is entered in one real-
ization of the game with player A’s increased point
probabilities. An extension of this result is given in
Section 2. This paper also includes several new and
quite general scoring systems theorems, including a
second relationship between player A’s probability
of winning under a scoring system and the impor-
tances of the points within that system. Indeed, these
theorems are of general interest in their own right.

2. Method

Pollard (2016) noted that there are several factors
that can contribute to the excitement of a situation in
sport. Indeed, he focused on a mathematical approach
based on outcome probabilities for the point. He
noted that the excitement of a particular point within a
scoring system can be measured by the expected value
of the absolute size of the change in a player’s proba-
bility of an overall win as a result of that point being
played. It follows that the excitement of a point is
related to the importance of the point (Morris (1976)).
Namely, if p is player A’s probability of winning a
point with importance I, the excitement of that point
is equal to 2pqI, where q = 1 - p.

We begin by considering two simple and very
similar scoring systems that are particularly relevant
to this paper. They are W2ALa and W2ALb when
pa = 0.9 and pb = 0.5. It can be shown that when the
score is -1 (player A trailing by 1 point), player A’s
probability of winning is 0.81 under W2ALb and that
it is 0.45 under W2ALa, whilst his probability of win-
ning at the score of 0 is 0.9 under both systems, and
it is clearly zero at the score of –2 for both systems.
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Thus, the point played at the score of –1 has an impor-
tance of 0.9 under both scoring systems. However,
the point played at the score of –1 is more exciting
under scoring system W2ALa than it is under the scor-
ing system W2ALb. The expectation of the absolute
value of the change in player A’s probability of win-
ning the game at the score of –1 is equal to 0.5*|0.9 –
0.45| + 0.5*|0.45 – 0| = 0.45 for W2ALa, whereas it is
0.9*|0.9 – 0.81| + 0.1*|0.81 – 0.0| = 0.162 for W2ALb.
The excitement at the score of –1 is greater under
W2ALa because player A’s (and hence also player
B’s) probability of winning is about to experience a
greater expected absolute change under that system.
This example highlights the difference between the
importance of a point and the excitement of a point.
It is easy to show that the excitement of a point is in
fact equal to the importance of that point multiplied
by 2pq where p is the probability that player A wins
the point, and q = 1 – p.

Continuing briefly with the above example, for
W2ALa the excitement at the score of +1 can be
shown to be 0.05 and the excitement at the score of
0 to be 0.09. Thus, starting from a score of 0, the
expected total excitement for the first two points is
equal to 1*0.09 + 0.9*0.05 + 0.1*0.45 = 0.18. For
the system W2ALb the excitement at the score of
+1 is equal to 0.018 and the excitement at the score
of 0 is equal to 0.09. Thus, starting from a score
of 0 in W2ALb, the expected total excitement for
the first two points is equal to 1*0.09 + 0.5*0.018
+ 0.5*0.162 = 0.18, interestingly the same as for
W2ALa.

In the above paragraph the excitement of a point
has been defined as the expectation of the absolute
value of the change in player A’s probability of win-
ning the game as a result of the playing of that point.
It can be seen that this is a measure of ‘probability
variation’ resulting from the playing of that point. As
in other areas of statistics it is possible to devise other
measures of variation, and the squared measure is a
standard one. Thus, we might define a second mea-
sure of excitement based on the square of changes in
probability. The second measure of excitement is the
expected value of the square of the change in player
A’s probability of winning as a result of the playing
of that point. This measure is called Ex2, and the first
measure Ex1. It is straightforward to show that Ex2 is
equal to pqI2 where I is the importance of the point,
p is the probability player A wins the point, and q = 1
- p. We note here that, just as the measure Ex1 can be
used in the situation where there are more than just
the two outcomes, win or loss, this second measure

Ex2 can also be used where there are three or more
outcomes (e.g. win, draw or loss).

Four new and quite general scoring system theo-
rems that are needed for this study are now presented.

Theorem 1. Consider a scoring system in which
player A’s probability of winning is P and the impor-
tance of the point in state i is Ii, when player A has
a probability pi of winning the point in state i and a
probability qi ( = 1 – pi) of losing the point (i = 1, 2,
. . . ). Suppose he modifies his probabilities of win-
ning the points in states i by an amount δi (i = 1,
2, . . . ). Then his overall probability of winning is
modified by an amount �P = �ni*Ii* δi, where ni
is the expected number of times state i is entered
in one realization of the scoring system with player
A’s modified point probabilities pi + δi. Note that Ii
is the importance of the point in state i before the
probabilities are modified.

Proof. We note firstly (before any modifications in
player A’s point probabilities) that by playing the
point in state i, player A’s overall probability of
winning increases by qi*Ii with probability pi or
decreases by pi*Ii with probability qi. This increase or
decrease in Player A’s probability of winning can be
considered a positive or negative step (resulting from
the playing of this point) along the P axis which goes
from 0 (A loses) to 1 (A wins). As the expected num-
ber of times state i is entered is ni after he modifies his
point probabilities by δi, the expected value of the sum
of these step values is equal to �ni*((pi +δi)*qi*Ii +
(qi – δi)(–pi*Ii)), and this equals �ni*δi*Ii. The sum
of these steps is also given by P’(1–P) – Q’P where
P’ is player A’s overall probability of winning with
the modified point probabilities, and Q’ = 1 - P’. Fur-
ther, P’(1 - P) - Q’P = �P, where �P = P’ – P, and this
completes the proof.

Corollary 1. Consider two equal players (with p = 0.5
on every point in unipoints or pa = pb in bipoints)
playing a fair game (namely, one in which the prob-
ability player A wins the game is 0.5, and the
probability player B wins it is also 0.5). Suppose
player A increases his probability of winning each
point by δ. Then, if P is now player A’s probability
of winning the game given his increased probability
of winning each point, P/Q = (1 + 2�P)/(1 - 2�P),
where �P = � ni*Ii* δ, Ii is the importance of the
point at state i when the players are equal and ni is
the expected number of times state i is entered in
one realization of the game with player A’s increased
point probabilities.
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Proof. This result follows from Theorem 1.

Theorem 2. For any scoring system which results in a
win to player A with probability P or a loss to player A
with probability Q (where P + Q = 1), suppose the sum
S is defined by S = � nipiqiIi

2 where the summation is
over all the transient states i, ni is the expected number
of times state i is entered, pi is the probability player A
wins the point in that state, Ii is the importance of that
state, and qi = 1 - pi. Thus S is the weighted sum of the
values of Ex2 for each state. Then S is equal to PQ.

Proof. We use backward induction, and consider
without loss of generality, the movement from any
transient state 1 to transient state 2 with probabil-
ity p1 or transient state 3 with probability q1, where
q1 = 1 – p1. We assume the result is true for states 2
and 3. Thus, this sum from state 1 onwards is equal to

1*p1*q1*I1
2 + p1*� njpjqjIj

2 + q1*� nkpkqkIk
2

= p1*q1*(P2-P3)2 + p1*P2*Q2 + q1*P3*Q3,
using an obvious notation
= p1*q1*(P2 - P3)*(Q3 - Q2) + p1*P2*Q2 +
q1*P3*Q3
= (p1*P2 + q1*P3)*(p1*Q2 + q1*Q3)
= P1*Q1, using the same notation, and this com-
pletes the proof.

Corollary 2. For the scoring system in Theorem
2, P = (1 + SQRT(1 – 4*S))/2, Q = (1 - SQRT(1 –
4*S))/2, and P/Q = (1 + SQRT(1 – 4*S))/(1 - SQRT(1
– 4*S)).

Proof. This result follows from Theorem 2.
The above two theorems are applicable in a very

general sense, and two examples are given in the
Appendix to demonstrate this.

Theorem 3. Given two equal players (with p = 0.5
on every point in unipoints or pa = pb in bipoints)
playing a fair game (one in which the probability
player A wins the game is 0.5 and the probability
player B wins it is 0.5), suppose player A increases
his probability of winning each point by δ. Then, P*Q
+ (δ*� ni*Ii)2 = 0.25, where Ii is the importance of
the point at state i when the players are equal and ni
is the expected number of times state i is entered in
one realization of the game with player A’s increased
point probabilities.

Proof. This result follows from Corollaries 1 and 2.

Theorem 4. Suppose the two systems W1(WkALa,
WkALb) and W1(WmPWa, WmPWb) have the same

expected durations, and the same importances I for
every point when pa = pb = p. Now suppose player
A increases his probability of winning every point
by δ. Then PAL*QAL = 0.25 – I2*δ2*�AL

2 and
PPW*QPW = 0.25 – I2*δ2*�PW

2 for the two systems,
where �AL and �PW are the expected durations of the
two systems with player A’s increased probability of
winning each point.

Proof. This result follows from Theorem 3.

Corollary 3. The corresponding equation to that in
Theorem 4 also holds when the two systems are
W1(WkALa, WkALb) and W1(WnPLa, WnPLb),
and when the two systems are W1(WnPLa, WnPLb)
and W1(WmPWa, WmPWb).

Returning to the major focus of this study, we
note that Pollard (1986, 1992) showed that the scor-
ing systems W1(WnSSa, WnSSb), where SS is AL,
PL or PW, all have the constant probability ratio
property (cpr). That is, the ratio of the probabil-
ity that player A wins in n + 2 m points divided
by the probability that he loses in n + 2 m points
(m = 0, 1, 2, . . . ) is a constant, and is equal to the
value of P/Q for that scoring system. In particular,
for the systems Wn(point-pairs) and W1(WnALa,
WnALb), the cpr is P/Q = (pan*qbn)/(pbn*qan) and
(P-Q)/� = (pa-pb)/2n. The values of these expres-
sions for the systems W1(WnPLa, WnPLb) and
W1(WnPWa, WnPWb) are given in Table 1.

The expressions in Table 1 allow us to compare
these efficient W-systems for their efficiency and
other aspects. The efficiency of scoring system is a
function of P and � (see equation (1)). It can also
be seen as a function of (P-Q)/� and P/Q. It is clear
that the average importance and the average excite-
ment of points within a scoring system are typically
smaller when the expected duration of a scoring sys-
tem is larger. It is typically not possible to compare
two scoring systems with exactly the same expected
duration. However, with the systems in Table 1 we
can compare two systems with the same value of (P-
Q)/�, that is, with very similar values of �. We next
show how this can be done.

The first two very efficient systems we compare are
an AL one and a PW one. We suppose pa = l/(l+m) +
δ and pb = l/(l+m) – δ, where l and m are integers, and
δ is such that pa and pb are legitimate probabilities.
For the scoring system W1(Wn1PWa, Wn1PWb),
we have (P–Q)/� = δ/(1+(n1–1)*(2 m/(l+m))), and
for the scoring system W1(Wn2ALa, Wn2ALb),
we have (P–Q)/� = δ/n2. Thus, the values for
(P–Q)/� for these two scoring systems are equal
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Table 1

Expressions for the constant probability ratio and (P-Q)/� for 3 scoring systems

System cpr, P/Q (P-Q)/�

W1(WnALa, WnALb) (pan*qbn)/(pbn*qan) (pa-pb)/2n
W1(WnPLa, WnPLb) (pa*qb2n−1)/(pb*qa2n−1) (pa-pb)/(2(1+(n-1)(pa+pb)))
W1(WnPWa, WnPWb) (pa2n−1*qb)/(pb2n−1*qa) (pa-pb)/(2(1+(n-1)(qa+qb)))

if n2 = 1+(n1–1)*2 m/(l+m). Hence, for example, if
l = 3 and m = 1, these two systems have the same
values for (P-Q)/� when (n1, n2) are (3, 2), or (5, 3),
or (7, 4), . . . . It follows from the form of equation
(1) above that, for these values of l, m, n1 and n2,
the ratio of the efficiencies of these two systems is
simply the ratio of the natural logarithms their P/Q
(or cpr) values.

The first of the specific examples in the previous
paragraph (n1 = 3 and n2 = 2), namely W1(W2ALa,
W2ALb) and W1(W3PWa, W3PWb) when l = 3 and
m = 1, is now considered in detail. It is known from
earlier work described in the introduction that the sys-
tem W1(W2ALa, W2ALb) is the more efficient of
these two systems when pa + pb >1. Standard numer-
ical markov chain methods were used to find the
expected number of points played and the probability
player A wins using the scoring system W1(W2ALa,
W2ALb). This scoring system starts with an a-point
played at state (0, a), and the first section of it is
completed when the score reaches +2 when state
W, 0b is reached (and the W2ALb section com-
mences with the b-point) or when the score reaches
–2 when the state L, 0b is reached (and the W2ALb

section commences). It can be seen that there are
nine transient states (or scores) in this formulation,
and of course two absorbing states (‘A wins’ and ‘A
loses’). The numerical markov chain approach that
was used is described for example in the text by
Kemeny and Snell (1960, pp.43-49). This numeri-
cal approach was taken as it appeared that, in general
for the various systems under consideration, explicit
expressions for the importance of each point and the
expected number of times each point is played, and
thus the average weighted importance and the average
weighted excitement would be either very compli-
cated or not achievable. Note that this numerical
approach required matrix inversion, and the matrix
became quite large as the n in Table 1 became
large.

When pa = pb = 0.75 (i.e. l = 3, m = 1 and δ = 0)
the two systems W1(W2ALa, W2ALb) and
W1(W3PWa, W3PWb) can be shown to have the
same expected duration of 64/3 points, and every

Table 2

Characteristics of W1(W2ALa, W2ALb) when pa = pb = 0.75

State Probability Importance, Ii ni ni * Ii

W, 1a 15/16 1/4 2/3 1/6
W, 0b 12/16 1/4 8/3 2/3
W, –1a 11/16 1/4 2 1/2
1, b 9/16 1/4 4 1
0, a 8/16 1/4 16/3 4/3
–1, b 5/16 1/4 4/3 1/3
L, 1a 7/16 1/4 2/3 1/6
L, 0b 4/16 1/4 8/3 2/3
L, –1a 3/16 1/4 2 1/2
Total a, Na 32/3 8/3
Total b, Nb 32/3 8/3
Total or Average 64/3 0.25

point within each of the two systems has an impor-
tance of 0.25. Table 2 gives, for the W1(W2ALa,
W2ALb) system, the probability that player A wins
from each of the nine transient states, the importance
of each state, and ni, the number of times each state is
entered in one realization of W1(W2ALa, W2ALb).

Table 3 gives the same information as Table 2,
but for the parameter values pa = 0.76 and pb = 0.74
(i.e. δ = 0.01). It also gives an additional column.
The mean duration of W1(W2ALa, W2ALb) when
pa = 0.76 and pb = 0.74 is equal to 21.2615 and the
average weighted importance of the points is 0.2483.
Note that values are given to 4 decimal places, unless
it is considered necessary or useful to do otherwise.
It follows from Table 3 that the weighted sum of the
excitements Ex1 is 1.9774, and the weighted sum
of the excitements Ex2 is 0.2472. Also, the average
importance per point played is equal to 0.0117, the
average Ex1 per point played is 0.0930, and average
Ex2 per point played is 0.0116.

The analyses summarized in Tables 2 and
3 for W1(W2ALa, W2ALb) were repeated for
W1(W3PWa, W3PWb), and a comparison of the
two systems is given in Table 4. The efficiency of
W1(W3PWa, W3PWb) when pa = 0.76 and pb = 0.74
is equal to 0.999822 (from equation (1)), whilst
W1(W2ALa, W2ALb) has unit efficiency. It can be
seen that the more efficient of these two scoring sys-
tems, W1(W2ALa, W2ALb), has the following seven
characteristics
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Table 3

Characteristics of W1(W2ALa, W2ALb) when pa = 0.76 and pb = 0.74

State Probability Importance, Ii ni ni * Ii ni * Ii
2

W, 1a 0.9492 0.2115 0.7278 0.1539 0.0326
W, 0b 0.7885 0.2172 2.7994 0.6081 0.1321
W, –1a 0.7320 0.2353 2.0715 0.4875 0.1147
1, b 0.6143 0.2353 4.0397 0.9507 0.2237
0, a 0.5532 0.2549 5.3154 1.3551 0.3455
–1, b 0.3594 0.2618 1.2757 0.3340 0.0875
L, 1a 0.4903 0.2618 0.6542 0.0713 0.0448
L, 0b 0.2913 0.2689 2.5160 0.6766 0.1819
L, –1a 0.2214 0.2913 1.8619 0.5424 0.1580
Total a, Na 10.6308 2.7102 0.6956
Total b, Nb 10.6308 2.5694 0.6252
Total or Average 21.2615 0.2483

Table 4

A comparison of W1(W2ALa, W2ALb) and W1(W3PWa, W3PWb) when pa = 0.76 and pb = 0.74

W1(W2ALa, W2ALb) W1(W3PWa, W3PWb)

Na 10.630774 10.841475
Nb 10.630774 10.416320
Expected duration, � 21.261549 21.257795
Probability A wins, P 0.5531539 0.5531445
Efficiency 1.0 0.999822
cpr 1.237907 1.237860
(P-Q)/� 0.005 0.005
P*Q 0.2471747 0.2471757
S = � nipiqiIi

2 0.2471747 0.2471757
0.25 – I2*δ2*�2 (with I = 0.25) 0.2471747 0.2471757
Average Importance, a-points 0.2549437 0.2449901
Average Importance, b-points 0.2416930 0.2516034
Average Importance, all points 0.2483183 0.2482306
Average Importance per point played 0.0116792 0.0116772
Average total excitement, Ex1, a-points 0.9886987 0.9689286
Average total excitement, Ex1, b-points 0.9886987 1.0084767
Average total excitement, Ex1, all points 1.9773973 1.9774053
Average total excitement Ex1 per point played 0.093003 0.093020
Average total excitement, Ex2, a-points 0.1268820 0.1192684
Average total excitement, Ex2, b-points 0.1202927 0.1279072
Average total excitement, Ex2, all points 0.2471747 0.2471756
Average total excitement Ex2 per point played 0.0116254 0.0116275
Average total Shannon entropy 11.9504 11.9437
Average total Shannon entropy per point played 0.56207 0.56185

1. a greater cpr,
2. points with greater average importance,
3. a greater value for the average importance per

point played,
4. points with smaller average total excitements,

Ex1 and Ex2,
5. smaller values for the average total excitement

per point played,
6. greater average total Shannon entropy, and
7. greater average total Shannon entropy per point

played.

As a second example we compare W1(W3PLa,
W3PLb) with W1(W4ALa, W4ALb) when pa = 0.76

and pb = 0.74. The value of (P-Q)/� for each of
these two scoring systems is equal to 0.0025. Equa-
tion (1) can be used to show that the system
W1(W3PLa, W3PLb) has an efficiency of 1.000089
whilst W1(W4ALa, W4ALb) has efficiency of 1
when pa = 0.76 and pb = 0.74. (It is noted that when
pa = pb = 0.75, both these scoring systems have an
expected duration of 256/3 points and all points have
an importance of 0.125). It was shown that the more
efficient scoring system W1(W3PLa, W3PLb) has the
same seven characteristics noted above.

As a third example we compare W1(W3PLa,
W3PLb) with W1(W5PWa, W5PWb) when pa = 2/3
+ 0.01 and pb = 2/3 – 0.01. The value of (P-Q)/�
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Table 5

W1(W6PLa, W6PLb) and W1(W8ALa, W8ALb) when pa = 0.71 and pb = 0.69

W1(W6PLa, W6PLb) W1(W8ALa, W8ALb)

Na 143.642952 145.450714
Nb 147.279482 145.450714
Expected duration, � 290.922434 290.901428
Probability A wins, P 0.6818265 0.6818134
Efficiency 1.000079406 1.0
cpr 2.142939516 2.142809837
(P-Q)/� 0.00125 0.00125
P*Q 0.2169391 0.2169439
Average total excitement Ex2 = S = � nipiqiIi

2 0.2169391 0.2169439
Average total excitement Ex2 per point played 0.000745694 0.000745764
Average total Shannon entropy 177.67567 177.63203
Average total Shannon entropy per point played 0.610732 0.610626

for each of these two scoring systems is equal to
3/1100. Equation (1) can be used to show that the
system W1(W3PLa, W3PLb) has an efficiency of
1.0000546 and W1(W5PWa, W5PWb) has efficiency
of 0.999891 when pa = 2/3 + 0.01 and pb = 2/3 – 0.01.
(It is noted that when pa = pb = 2/3, both these scor-
ing systems have an expected duration of 30.25 and
all points have an importance of 3/22.) When pa = 2/3
+ 0.01 and pb = 2/3 – 0.01, the more efficient scor-
ing system W1(W3PLa, W3PLb) has the same seven
characteristics noted in the two examples above.

A modified approach for deriving some of the
results in the above table (but not those for Ex1)
is now described. This approach is useful when the
values of n in these systems are not as small as
in the above examples, and the matrices needed to
be inverted (numerically) would be quite large. To
demonstrate this, suppose we are interested in calcu-
lating the characteristics for W1(WnALa, WnALb)
and W1(WmPLa, WmPLb) when (pa, pb) equals,
say, (0.71, 0.69). These two systems have the same
value for (P-Q)/� when n = 8 and m = 6. Making use
of the expressions in Table 1, equation (1), and The-
orem 2, the results for these two systems are shown
in Table 5. It can be seen that the more efficient scor-
ing system W1(W6PLa, W6PLb) has the following 5
characteristics

1. a greater cpr,
2. points with smaller total average excitement

Exc2,
3. a smaller value for the total average excitement

Exc2 per point played,
4. greater average total Shannon entropy, and
5. greater average total Shannon entropy per point

played.

As a second example of this modified approach,
suppose we are interested in calculating the charac-

teristics for W1(WnALa, WnALb) and W1(WmPWa,
WmPWb) when (pa, pb) equals, say (0.71, 0.69).
Here it can be shown that W1(W7ALa, W7ALb) and
W1(W11PWa, W11PWb) have the same value of (P-
Q)/�, and the more efficient system W1(W7ALa,
W7ALb) can be shown to have the same five char-
acteristics noted above.

As a third example we compare W1(WnALa,
WnALb) and W1(WmPLa, WmPLb) when (pa,
pb) equals, say (0.72, 0.70). Here W1(W72ALa,
W72ALb) and W1(W51PLa, W51PLb) have the
same value of (P-Q)/�, and the more efficient system
W1(W51PLa, W51PLb) can be shown to have the
same five characteristics noted above.

In general, it can be seen that, given any two val-
ues of pa and pb, it is possible to compare any two
of the three general W systems under consideration
(AL, PW, PL) by using an appropriate n and m value,
and the more efficient system can be shown using
the ‘matrix approach’ to have the seven characteris-
tics noted above. Correspondingly, the ‘non-matrix
approach’ can be used to show that the more
efficient system has the five characteristics noted
secondly.

3. Conclusions

It has been noted that a set of tennis can be con-
sidered to be a rather specific design for a sequential
2-sample binomial statistical test, albeit not an effi-
cient one. The excitement of a particular point within
a tennis set can be measured by the absolute change
in a player’s probability of winning the set as a result
of that point being played. A squared measure of
excitement has also been defined. These excitement
measures for a point are thus measures of variabil-
ity in a player’s probability of winning as a result of
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the point being played. The most efficient sequential
2-sample binomial test in a given situation has been
shown to have the smallest average excitement per
point played (or per bernouilli trial). This most effi-
cient binomial test has also been shown to have the
largest average ‘importance’ per point played and the
largest ‘Shannon entropy’ per point played.

These characteristics of the most efficient 2-sample
binomial tests give further insights into the design
of efficient statistical tests, and may be useful con-
ceptually in the design of statistical tests for other
situations.
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Appendix

Example A1. This is an example of Theorem 2.
Consider a game in which the winner is the first
player to reach 3 ‘units’. Suppose player A gets 1
‘unit’ for each point he wins, and player B gets 1
‘unit’ for each point he wins except the first point
played for which he gets two ‘units’ if he wins it.
Clearly this is an unfair game. Using the notation
(n1, n2, n3) to represent the state where player A
has won n1 ‘units’, player B has won n2 ‘units’ and
n3 points have been played, the possible states in
this game are (0,0,0), (1,0,1), (0,2,1), (2,0,2), (1,1,2),
(1,2,2), (0,3,2) = L, (3,0,3) = W, (2,1,3), (2,2,3),
(1,2,3), (1,3,3) = L, (3,1,4) = W, (3,2,4) = W, (2,2,4),
(2,3,4) = L, (1,3,4) = L, (3,2,5) = W and (2,3,5) = L.
The absorbing states where player A loses (L) or wins
(W) are identified. Taking the 10 transient (or non-
absorbing) states in the above order, and supposing
the p-values (for the probability that player A wins
the point in that state) are respectively 0.8, 0.3, 0.7,
0.4, 0.5, 0.6, 0.4, 0.5, 0.6 and 0.6, it can be shown

(by calculating backwards from the last possible
point) that the importances of these points are equal
to 0.4388, 0.296, 0.3, 0.24, 0.4, 0.5, 0.4, 1.0, 0.6 and
1.0 respectively. For these values of p, the values of ni
for these transient states are equal to 1, 0.8, 0.2, 0.24,
0.56, 0.14, 0.424, 0.084, 0.28 and 0.4224 respectively.
It follows that �nipiqiIi

2 = 0.2462741184. First prin-
ciples can be used to show that the probability A wins
the game, P is equal to 0.56104, and Theorem 2 can
then be verified.

Example A2. We now suppose player A in Exam-
ple A1 modifies his p-values in the 10 transient
states in the above example by δi values of –0.2, 0.1,
–0.1, 0.1, 0.1, 0.1, 0.1, –0.1, 0.1, and –0.1 respec-
tively. The ni values are now equal to 1, 0.6, 0.4,
0.24, 0.36, 0.24, 0.336, 0.168, 0.144 and 0.2688 and,
using Theorem 1, �P = �ni*δi*Ii = –0.07144 and so
player A’s probability of winning is now P’ = 0.56104
– 0.07144 = 0.4896, which can be verified by first
principles.


