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Abstract. George Lindsey was one of the first to present run scoring distributions of teams of Major League Baseball. One
drawback of Lindsey’s approach is that his calculations represented a situation where the team is average. By use of a multi-
nomial/multilevel modeling approach, we look more carefully how run-scoring distributions vary between teams and how
run-scoring is affected by different covariates such as ballpark, pitcher quality, and clutch situations. By use of exchangeable
models over ordinal regression coefficients, one gets a better understanding which covariates represent meaningful differences
between run-scoring of teams.
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1. Introduction

1.1. George Lindsey and the runs expectancy
matrix

One the pioneers in sabermetics was George Lind-
sey, a defense consultant in Canada who had a great
love for baseball. Lindsey wrote two remarkable papers
in the 1960’s that had a great influence on the quantita-
tive analysis of baseball. In particular, Lindsey (1963)
focused on several questions of baseball strategy such
as stealing a base, sacrificing to sacrifice a runner to
second base, and issuing an intentional walk. Lindsay
observed that these questions could be answered by the
collection of appropriate data.

“By collecting statistics from a large number of
baseball games it should be possible to examine
the probability distributions of the number of runs
resulting from these various situations. Object of
all choices is ... to maximize the probability ... of
winning the game.”

∗Corresponding author: Jim Albert, Department of Mathemat-
ics and Statistics, Bowling Green State University, Bowling Green,
OH, USA. Tel.: +1 419 372 7456; Fax: +1 419 372 6092; E-mail:
albert@bgsu.edu.

Lindsay noted that the probability of winning at a
point during the game depends on the current score and
inning and presented tables of W(I, Hi), the probability
a team with a lead of I runs at the home half of the ith
inning Hi will win the game.

In this paper, Lindsey also considered the runs scor-
ing distribution of a team during an inning. He focused
on the run potential, the number of runs a team will
score in the remainder of the inning. He noted that the
run potential depends on the current number of outs and
the runners on base. Since there are three possible num-
ber of outs and eight possible runner configurations,
there are 3 × 8 = 24 possible out/runner situations,
and Lindsey focused on computing

Prob(R|T, B),

the probability of scoring exactly R runs in the remain-
der of the inning given T outs and runners on base B.

To learn about run potential, Lindsey’s father col-
lected run-scoring data for over 6000 half-innings in
games during the 1959 and 1960 seasons, and Lindsey
was able to find empirical run-scoring distributions for
each of the 24 situations. By computing the mean runs
for each situation, he produced the runs expectancy
matrix as displayed in Table 1.
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Table 1

Lindsey’s runs expectancy matrix from Lindsey (1963)

Outs Bases occupied

0 1 2 3 1,2 1,3 2,3 1,2,3

0 Outs 0.46 0.81 1.19 1.39 1.47 1.94 1.96 2.22
1 Out 0.24 0.50 0.67 0.98 0.94 1.12 1.56 1.64
2 Outs 0.10 0.22 0.30 0.36 0.40 0.53 0.69 0.82

At the beginning of an inning with no outs and bases
empty, a team will score, on average, 0.46 runs in the
remainder of the inning. In contrast, when the bases
are loaded with one out, a team will score 1.64 runs in
the rest of the inning.

The runs expectancy table has been illustrated in
a number of sabermetrics books such as Thorn et al.
(1984), Albert and Bennett (2003), Keri et al. (2007)
and Tango et al. (2007) for deciding on proper baseball
strategy, for learning about the value of plays, and for
evaluating players. For example, Chapter 7 of Albert
and Bennett (2003) shows the use of run expectancies
in determining the values of singles, doubles, triples,
and home runs that leads to use of linear weights to
measure batting performances. Chapter 9 of Albert
and Bennett (2003) uses the run expectancy table to
assess the value of common baseball strategies such as
a sacrifice bunt, intentional walk, and stealing a base.

Lindsay (1963) cautioned that the run expectancy
table represented the situation where all players were
“average”.

“It must be reiterated that these calculations per-
tain to the mythical situation in which all players
are ‘average’. The allowance for the deviation from
average performance of the batter at the plate, and
those expected to follow him, or of runners on
the bases, can be made by a shrewd manager who
knows his players.”

Also Lindsey (1963) mentioned the possibility of
extending this analysis to run-scoring of teams with
non-average players.

“If it were desired to provide a manager with
a guide to the advisability of attempting various
strategies in different situations, it would be pos-
sible to complete calculations of the type outlined
here for all stages of the game and scores, pertain-
ing to average players. It would also be possible,
although onerous, to compute tables for nonaver-
age statistics, perhaps based on the past records of
the individual players on the team.”

Table 2

Basic probability model fits to runs scored in MLB. The Actual
column gives the observed fractions of scoring 0, 1, 2, ... runs in
the 2013 season and the Poisson and NB columns give the estimated
fractions from fitting the Poisson and negative binomial distributions

Runs Actual Poisson NB
λ = 0.462 n = 0.399, p = 0.464

0 0.738 0.630 0.736
1 0.146 0.291 0.158
2 0.066 0.067 0.059
3 0.029 0.010 0.025
4 0.013 0.001 0.012
5 0.005 0.000 0.005
6 0.002 0.000 0.003
7 0.001 0.000 0.001

1.2. Modeling runs scored in an inning

A related line of research is the use of probabil-
ity models to represent the number of runs scored in
an inning or a game. Fits of basic discrete probability
models do not accurately represent actual runs scored
in an inning. To demonstrate this claim, the Poisson
(λ) and negative binomial (n, p) models were sepa-
rately fit to all inning runs scored in the 2013 season
and the fitted probabilities for these two models and the
actual run-scoring distribution are displayed in Table 2.
Looking at the table, the Poisson fit underestimates the
probability of a scoreless inning. Generally, the Pois-
son fit understates the actual variability in runs scored.
The negative binomial fit is better than the Poisson, but
this model overestimates the probability of scoring one
run and underestimates the probability of scoring two
runs.

Since basic probability models appear inaccurate,
more sophisticated models for run scoring have been
proposed in the literature. For example, Rosner et al.
(1996) represents the probability of scoring x runs in
an inning by the sum

h(x) =
x+6∑
x+3

f (N)g(x|N),

where N represents the number of batters in the inning.
In this paper, the probability function f (N) is rep-
resented by a modification of a negative binomial
distribution, and the conditional distribution of the
number of runs given the number of batters, g(x|N), is
modeled by a truncated binomial distribution. Another
approach in Wollner (2000) provides an exponential
formula for the probability a team averaging A runs
per game scores R runs in a particular inning.
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1.3. Multilevel modeling

Another research theme in modeling of sports data
is the use of multilevel or hierarchical models to esti-
mate parameters from several groups. Efron and Morris
(1975) illustrate the use of an exchangeable model
to estimate true batting averages of 18 players from
the 1970 season. Albert (2004, 2006) provide further
illustrations of the use of an exchangeable model to
estimate a set of true batting rates or pitching rates.
These models can be extended to the regression frame-
work. Morris (1983) uses an multilevel regression
model to assess if Ty Cobb was ever a true .400 hitter.
Albert (2009) uses an exchangeable regression model
to simultaneously estimate the true pitching trajecto-
ries for a number of pitchers.

1.4. Plan of the paper

This paper provides an multilevel modeling frame-
work for understanding run scoring of teams in Major
League Baseball, and understanding how team run
scoring is affected by several factors, such as ball-
park, pitcher quality, and runners in scoring position.
The basic multilevel model, described in Section 2.1,
simultaneously estimates means from several popula-
tions, say the average number of runs scored for 30
MLB teams, when the means are believed to follow a
normal curve model with unknown mean and standard
deviation.

As in Lindsay’s work, we focus on the number of
runs scored in a half-inning. A run scoring distribution
for a particular team is represented by a multino-
mial distribution with underlying probabilities over the
classes 0 runs, 1 run, 2 runs, 3 runs, and 4 or more runs.
Section 2.2 describes a multilevel model for simul-
taneously estimating a set of multinomial probability
vectors. By using this model to estimate the run scor-
ing distributions for the 30 MLB teams, one obtains
“improved” estimates at the teams’ abilities to score
runs.

After estimating teams’ scoring distributions, we
next explore team situational effects. An ordinal
regression model, described in Section 2.3, is a useful
method for describing how run-scoring probabilities
change as one changes a predictor such the quality of
a pitcher. This model can be described in terms of the
odds of scoring at least a particular number of runs. It
is called a proportional odds model as a change in the
predictor will result in the odds of scoring runs being

increased by a constant factor. Section 3.2 introduces
the use of odds in comparing run scoring distributions
of the National and American Leagues. Section 3.3
extends this approach to compare run scoring of the 30
teams and illustrates the value of multilevel modeling.

Section 4 focuses on the effect of the following
covariates on team run scoring.

• (Home Effects) Teams generally score more runs
at home compared to away games. What is the
general size of the home/away effect for scor-
ing runs and how does this effect vary among the
teams?

• (Pitcher Effects) Clearly, the pitcher has a sig-
nificant impact on run-scoring. A strong starting
pitcher can neutralize the runs scored by even
the best-scoring team in baseball. Generally, one
expects that a team’s run scoring is negatively
associated with the quality of the pitcher. How
can one quantify this pitcher effect, and how does
this effect differ among teams?

• (Runner Advancement) Run scoring can be
viewed as a two-step process – batters get on base
and then other batters advance them to home. Do
teams differ in their ability to get runners home?

We address each of these questions by a multilevel
ordinal regression model where the effect of the covari-
ate can vary across teams. Section 5 generalizes this
approach to handle several covariates at once, Section
6 gives a brief discussion of the potential covariates
relevant to run-scoring, and Section 7 summarizes the
general findings.

2. Methods

2.1. Estimating a group of means

Consider the problem of estimating a collection of
means from several populations. One observes sample
means y1, ..., yN , where the sample mean from the jth
population, yj is distributed normal with mean θj and
known standard error σj . We describe this situation in a
baseball setting, where N = 30, y1, ..., y30 correspond
to the sample mean numbers of runs scored in a half-
inning for the thirty teams for a season, and θ1, ..., θN

are the corresponding population means of runs scored.
One can obtain obtained improved estimates at the

population means by means of the following multilevel
model. We assume that the means θ1, ..., θ30 represent a
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sample from a normal curve with mean µ and standard
deviation τ. The locations of the normal curve param-
eters µ and τ are unknown, and so (under a Bayesian
framework) vague or imprecise prior distributions are
assigned to these parameters.

One can fit this multilevel model from the observed
sample means of runs scored for the 30 teams. In par-
ticular, we estimate the population mean and standard
deviation µ and τ by µ̂ and τ̂, respectively. The esti-
mate µ̂ represents the overall or combined estimate
of a population mean of the runs scored from the 30
teams and the estimate τ̂ represents the spread of these
population means.

Three sets of estimates

There are three types of estimates of the population
means. If we estimate each population mean only by
using data from the corresponding sample, we obtain
individual estimates

θ̂I
j = yj, j = 1, ..., N.

On the other extreme, if we assume that the popula-
tion means are equal, that is, θ1 = ... = θN , then we’d
estimate θj by the combined estimate

θ̂C =
∑N

j=1 yj/σ
2
j∑N

j=1 1/σ2
j

,

where the sample mean yj is weighted by the inverse
of the sampling variance 1/σ2

j .
By use of the multilevel model, we obtain improved

estimates of the population means that compromise
between the individual and combined estimates. The
multilevel (ML) estimate of the population mean for
team j, θ̂ML

j , is given by

θ̂ML
j = 1/σ2

j

1/σ2
j + 1/τ̂2

yj + 1/τ̂2

1/σ2
j + 1/τ̂2

µ̂.

The estimate of the mean runs scored for the jth team,
θ̂ML
j shrinks the individual team estimate yj towards

the combined µ̂, where the size of the shrinkage
depends on the ratio of the estimated population stan-
dard deviation τ̂ to the standard error σj . If τ̂ is small
relative to the standard error σj , then the multilevel
estimate θ̂ML

j will be close in value to the combined
estimate. In contrast, if the estimate τ̂ is large (relative
to the standard error), the multilevel estimate will be
close to the individual estimate.

2.1.1. Example
This multilevel model was fit to the sample means

of runs scored for the 30 teams in the 2013 season.
We obtain the estimates µ̂ = 0.461, τ̂ = 0.045, so the
population means of the runs scored are estimated by
a normal curve with mean 0.461 and standard devi-
ation 0.045. In the 2013 season, Anaheim averaged
0.500 runs scored per inning with a standard error
of 0.027. The individual estimate of Anaheim’s mean
runs scored is yj = 0.500 and the combined estimate
is given by θ̂C = µ̂ = 0.461. The improved multilevel
estimate of Anaheim’s mean is given by

θ̂ML
ANA = 1/0.0272

1/0.0272 + 1/0.0452 0.500

+ 1/0.0452

1/0.0272 + 1/0.0452 0.461 = 0.490

Here the multilevel estimate of Anaheim mean shrinks
the individual estimate 26% towards the combined esti-
mate. Across all teams, the median shrinkage is 23%.
Since this shrinkage percentage is a small value, this
indicates that the observed differences in run scor-
ing between the 30 teams correspond to meaningful
differences in the teams’ run-scoring abilities.

2.2. Estimating collections of multinomial data

A related problem is estimating a multinomial popu-
lation. Suppose we classify data into k bins and observe
the vector of frequencies W = (w1, ..., wk). The vector
W is assumed to have a multinomial distribution with
sample size N = w1 + ... + wk and probability vector
p = (p1, ..., pk), where pj represents the probability
that an observation falls in the jth bin. In our setting,
we classify the number of runs scored in an inning in
the five bins 0, 1, 2, 3, and 4 or more runs, and the fre-
quencies w1, ..., w5 represent the number of innings
where a particular team scores the different number of
runs.

This type of multinomial data on runs scored is
collected for each of the 30 baseball teams. Let
W1, ..., W30 denote the vectors of frequencies of runs
scored for the 30 teams. We assume the vector for
the jth team Wj is multinomial with probability vec-
tor pj . We are interested in estimating the probability
vectors p1, ..., p30. As in the population means case,
we can consider individual, combined, and multilevel
estimates for the probability vectors.
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Individual estimates

Suppose we use the data from only the jth team
to learn about its run scoring tendencies. Then the
probabilities of falling in the different run groups are
estimated by the individual estimates:

p̂Ij = (p̂j
1, ..., p̂

j
k) =

(
w

j
1

Nj
, ...,

w
j
k

Nj

)
,

where w
j
1, ..., w

j
k are the bin counts for the jth team

and Nj is the number of innings for the jth team.

Combined estimates

Instead, suppose we assume that the probabilities
of falling in the different runs group are the same for
all teams; that is, p1 = ... = p30. Then we can esti-
mate each team’s probability vector by the combined
estimate

p̂C = (p̂C
1 , ..., p̂C

k ) =
(∑

w
j
1∑

Nj
, ...,

∑
w

j
k∑

Nj

)
.

Here we are pooling the bin counts for all teams to get
the probability estimate for a particular bin.

Multilevel estimates

We wish to get improved estimates at the team proba-
bility vectors p1, ..., p30 that compromise between the
individual estimates and the combined estimates. This
is accomplished by means of the following multilevel
model. We assume that the unknown probability vec-
tors p1, ..., p30 are a random sample from a Dirichlet
distribution with mean vector η and precision K with
density proportional to

g(p) ∝
5∏

j=1

p
Kηj−1
j ,

where η = (η1, ..., η5). The parameters η and K are
assigned vague prior distributions.

One fits this multilevel model to the observed count
data and one obtains estimates at K and η from the
posterior distribution – call these estimates K̂ and
η̂. (Details of this computation are provided in the
appendix.) The estimate η̂ is approximately the com-
bined estimate p̂C. Then the multilevel estimate at the
probability vector of team j is given by

p̂
j
ML = Nj

Nj + K̂
p̂j + K̂

Nj + K̂
η̂.

As anticipated, the multilevel model estimate for
the probability vector of team j is approximately a
weighted average of the individual estimate p̂j and
the combined estimate p̂C. The weights depend on
the ratio of the precision parameter estimate K̂ and
the multinomial sample size Nj . We will illustrate the
application of this model in simultaneously estimating
the run-scoring distributions of the 30 teams in Section
3.3. (An early use of this Dirchlet distribution in mod-
eling is given in Good (1967) and a good survey of
smoothing estimates for multinomial data is provided
in Simonoff (1995)).

2.3. Groups of ordinal multinomial data
with regression

Ordinal logistic regression

Suppose one observes the vector of run frequencies
w = (w1, ..., wk) which is multinomial with probabil-
ity vector p = (p1, ..., pk). The categories 1, ..., k are
ordinal – in our setting, these categories will be “0
runs”, “1 run”, “2 runs”, etc. Define the probability

θc = pc + ... + pk

which represents the probability of scoring at least c

runs. The odds of scoring at least c runs is given by

odds = θc

1 − θc

.

Suppose one observes a variable x that influences
the run-scoring probabilities p. The ordinal logistic
model (see McCullagh (1980) and Johnson and Albert
(1999)) says that the log of the odds of scoring at least
c runs is a linear function of x. This model is written
as

log

(
θc

1 − θc

)
= γc + xβ,

where γc and β are unknown parameters. A unit
increase in the covariate x results in the log odds of
scoring c or more runs to be increased by β. By taking
the exponential of both sides, this model can be written
in the “proportional odds” form:

θc

1 − θc

= exp (γc + xβ).
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For each unit increase in the variablex, the odds of scor-
ing at least c runs will increase by a factor of exp(β).
This proportional odds model has the special property
that the odds of scoring c or more runs will increase
(with a unit increase of x) by a factor of exp(β) for all
values of c. We illustrate this basic ordinal regression
model in comparing the run-scoring distributions of
the NL and AL in Section 3.2.

Ordinal logistic regression over groups

As a more general set-up, suppose we observe
run-scoring frequencies for N = 30 teams, where the
frequencies for the jth team wj is multinomial with
probability vector pj = (pj

1, ..., p
j
k). With the same

covariate x, we fit the ordinal logistic model to wj of
the form

log

(
θ
j
c

1 − θ
j
c

)
= γj

c + xβj,

where θ
j
c = p

j
c + ..., p

j
k. In our setting, the regression

coefficient βj represents the additive increase in the
logit of scoring at least c runs for the j team for each
unit increase in x, and exp(βj) represents the multi-
plicative increase in the odds of scoring c or more runs.
After performing separate fits of the ordinal model to
the run-scoring data for each of the N teams, we obtain
the estimates β̂1, ..., β̂N with associated standard errors
σ1, ..., σN .

One can now use the estimation of separate means
methodology of Section 2.1 to get improved (mul-
tilevel) estimates at the regression effects. The true
regression effects β1, ..., βN are given a normal distri-
bution with mean µ and standard deviation τ, we place
vague priors on µ and τ. Improved estimates are pro-
vided by fitting this multilevel model – the estimates
have the general form

β̂ML
j = 1/σ2

j

1/σ2
j + 1/τ̂2

β̂j + 1/τ̂2

1/σ2
j + 1/τ̂2

µ̂.

These multilevel estimates{β̂ML
j } adjust the individual

estimates {β̂j} towards a combined estimate µ̂. As will
be seen in a later section, the degree of adjustment
depends on the sizes of the estimate of the standard
deviation of the true effects τ̂ relative to the size of the
standard error estimates {σj}.

3. League and team differences in scoring

3.1. Run scoring of all teams in 2013 season

We begin by collecting in Table 3 the runs scored for
all complete innings (three outs) in the 2013 season.
Since scoring five or more runs in an inning is rela-
tively rare, Table 4 collapses the data from Table 3 by
combining the counts of runs four or greater into the
class “4+”.

3.2. Logits and comparing scoring of the NL
and AL

To motivate our general approach, a useful reex-

pression of a proportion p is the logit L = log
(

p
1−p

)
.

For example, using data from Table 4, the logit of the
proportion of innings where at least one run is scored is

L = log

(
1 − 0.738

0.738

)
= −1.036.

This particular logit is computed by dividing the data
by the breakpoint “0/1 runs” and comparing the propor-
tions of the categories “1 or more runs” and “0 runs”.
In a similar way, one can divide the data by each of the
breakpoints “1/2 runs”, “2/3 runs”, and 3/4+ runs” and
compute the logits of the resulting proportions. If we
do this for all breakpoints, Table 5 is obtained.

Logits are useful in comparing groups of ordinal data
such as runs scored. To illustrate, suppose we want to
compare the runs scored per inning of National and

Table 3

Frequency table of runs scored for all complete innings in 2013
season

Runs Count Runs Count

0 32315 6 81
1 6400 7 38
2 2899 8 14
3 1254 9 4
4 584 10 1
5 207 11 1

Table 4

Counts and percentages of inning runs scored with the new category
“4+”

Runs 0 1 2 3 4+

Count 32315 6400 2899 1254 930
Percentage 73.80 14.60 6.60 2.90 2.10
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Table 5

Logits of runs scored for all breakpoints

Breakpoint 0/1 runs 1/2 runs 2/3 runs 3/4+ runs

Proportion scoring 0.262 0.116 0.050 0.021
“large” runs

Proportion scoring 0.738 0.884 0.950 0.979
“small” runs

Logit = log Proportion large
Proportion small

−1.036 −2.031 −2.944 −3.842

Table 6

Runs scored per inning by the American and National Leagues in
the 2013 season

Runs 0 1 2 3 4+

American League 15963 3246 1497 654 500
National League 16352 3154 1402 600 430

Table 7

Logits of runs scored for all breakpoints for the two leagues

Breakpoint 0/1 runs 1/2 runs 2/3 runs 3/4+ runs Median

American League −0.996 −1.980 −2.887 −3.755
National League −1.074 −2.082 −3.011 −3.912
Difference 0.078 0.102 0.124 0.157 0.113

American League teams in the 2013 season. First we
obtain the counts of runs scored by the two leagues as
displayed in Table 6. Each row of counts of the table
is converted to proportions, and then logits are com-
puted using each of the four breakpoints. The logits for
each league are displayed in Table 7 and the “Differ-
ence” row gives the difference in the logits for the two
leagues.

An ordinal regression model is a useful way to sum-
marize the relationship seen in Table 7. If θc is the
probability of scoring at least c runs, then the model is

log

(
θc

1 − θc

)
= γc + xβ,

where the {γc} are parameters defining the cutpoints
of the probabilities of scoring on the logit scale, x indi-
cates the league (x = 1 if AL and x = 0 if NL), and β

is the increase in the log odds of scoring c runs or more
for the AL league. If we fit this model to the 2013 run
scoring data, we obtain the estimates

γ̂1 = −0.994, γ̂2 = −1.990, γ̂3 = −2.907,

γ̂4 = −3.790, β̂ = 0.0822.

Note that the estimates of γc are approximately equal to
the logit values given in Table 7. Due to the designated

0.05

0.10

010250020002

Season

A
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A
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Fig. 1. American League run-scoring advantage over the National
League for the seasons 1998 to 2013, the advantage is the estimate of
the parameter β in the fit of the ordinal regression model. A smooth-
ing curve indicates that the American League advantage in scoring
runs has remained pretty constant over this time interval.

hitter, more runs are scored by American League teams
and the size of this effect is measured by the coeffi-
cient estimate β̂. On the logit scale, the the probability
an American League team scores a large number of
runs is 0.0822 greater than the probability a National
League team scores a large number of runs. There is
a nice approximation for differences in logits – for
small values of x, an increase of x on the logit scale
is approximately a 100 × x percentage increase on the
probability scale. Using this interpretation, we can say
that the probability an American League team scores a
large number of runs is 100 × 0.0822 = 8.22% greater
than the probability a National League team scores a
large number of runs.

To gain some historical perspective on the run-
scoring advantage of the American League, this ordinal
regression model was fit for each of the 16 seasons
1998 through 2013. Figure 1 displays a graph of the
AL advantage (on the logit scale) against season. It
is interesting to note that there is substantial variabil-
ity in the AL advantage – for example the advantage
was 0.121 in 1998 and decreased sharply to 0.019 in
2007. But there is no clear pattern in the changes in AL
advantage over this time period. Generally, the prob-
ability an AL team scores a large number of runs is
about 6% larger than the probability a NL team scores
a large number of runs.

3.3. Comparing scoring of teams

How does run scoring vary across teams? If we
break down this runs table by the batting team in Table
8, we see some interesting variation in runs scored.
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Table 8

Percentages of different inning runs scored for all teams in the 2013
season

BAT TEAM R0 R1 R2 R3 R4

1 ANA 72.4 15.5 6.5 2.8 2.8
2 ARI 74.6 13.1 7.1 3.3 1.9
3 ATL 74.2 13.5 6.9 2.9 2.5
4 BAL 71.1 16.0 7.2 3.4 2.3
5 BOS 68.9 15.9 7.9 4.1 3.2
6 CHA 75.7 14.2 6.4 2.0 1.6
7 CHN 76.3 12.9 6.3 2.7 1.7
8 CIN 72.7 16.2 6.2 2.7 2.2
9 CLE 71.4 15.4 7.4 3.5 2.4
10 COL 72.4 15.1 7.0 3.4 2.1
11 DET 72.0 13.6 7.4 3.4 3.5
12 HOU 76.7 13.0 5.3 3.2 1.8
13 KCA 74.4 14.0 5.6 3.4 1.9
14 LAN 73.2 15.3 7.5 2.3 1.7
15 MIA 79.1 12.5 4.9 2.2 1.4
16 MIL 74.6 14.4 6.6 2.5 1.9
17 MIN 74.6 15.2 6.0 2.7 1.5
18 NYA 74.6 14.2 6.1 2.9 2.2
s 19 NYN 75.8 13.6 6.3 2.5 1.7
20 OAK 72.0 14.4 7.9 2.6 3.1
21 PHI 75.6 13.8 6.5 2.1 1.9
22 PIT 74.4 15.4 5.8 2.6 1.8
23 SDN 74.8 15.1 5.7 2.5 1.8
24 SEA 74.6 14.7 6.9 2.2 1.6
25 SFN 74.6 14.9 5.6 3.4 1.6
26 SLN 71.6 15.5 6.8 3.0 3.2
27 TBA 71.9 16.1 7.2 2.9 1.8
28 TEX 72.5 14.8 7.6 2.6 2.5
29 TOR 72.4 14.8 7.4 3.2 2.2
30 WAS 74.1 14.4 6.7 3.0 1.9

If one looks at the percentage of big innings (four runs
or more), Boston’s percentage of big innings is 3.2,
contrasted with Miami’s percentage of 1.4. Boston’s
percentage of scoreless innings is 68.9, while the New
York Mets were scoreless in 75.8 percent of their
innings.

The logit approach described in Section 3 is used
to facilitate comparisons in team scoring. Logits were
computed for each team using the four breakpoints.
For example, for Philadelphia, we computed the four
logits

log

(
P(runs ≥ 1)

P(0 runs)

)
, log

(
P(runs ≥ 2)

P(0, 1 runs)

)
, log

(
P(runs ≥ 3)

P(0, 1, 2 runs)

)
, log

(
P(runs ≥ 4)

P(0, 1, 2, 3 runs)

)

To help in interpretation, the collection of logits for
each team was converted to a residual by subtract-
ing the MLB logits found in Table 5, and the team
logit residuals are displayed in Fig. 2. Teams with
lines above the horizontal line at zero represent above-
average scoring teams. The run scoring for most of the

Fig. 2. Logit run scoring estimates for all teams. A team’s residual
logits were obtained by subtracting the overall logits.

Fig. 3. Logit run scoring estimates for all teams using a multilevel
model. The residual logits were obtained by subtracting the overall
logits.

teams fall within 0.1 (on the logit scale) of the aver-
age. Note that some of the team lines are not monotone
which indicate the presence of some chance variability
in these run scoring estimates. Also, note there is more
variability in the logit of 3 or more runs scored – that
is a reflection of the small number of occurrences of
big innings for the teams.

3.4. Multilevel modeling of team run distributions

Since there appears to be chance variability in the
estimates of run scoring for the individual teams, there
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may be some advantage to estimating the run scoring
distributions simultaneously using a multilevel model.
The exchangeable model of Section 2.2 is fit to the
run distributions for the 30 teams. The estimate of the
smoothing parameter K is 1973. Most teams play close
to the median number of innings 1457. So the size of
the shrinkage of the individual estimates towards the
combined estimate is

1973

1973 + 1457
= 0.57.

The multilevel estimates shrink the observed per-
centages approximately 57% towards the combined
estimate. Figure 3 displays the logit reexpression
of these multilevel estimates. We see these multi-
level estimates adjust the individual estimates towards
the combined estimate represented by the horizontal
line at zero. One attractive feature of these esti-
mates is that they remove some of the nonmonotone
behavior of the individual estimates and reduces the
variability in the logits of runs scored that we saw
in Fig. 2. From similar experience with the use
of multilevel models in estimating a collection of
batting averages, we would expect these multilevel
model estimates to provide better predictions than
individual estimates of team run-scoring for future
games.

4. Covariate effects

4.1. General method

Section 3 introduced the use of logits in the compar-
ison of run-scoring distributions. To explore the effect
of specific covariates like home/away, pitcher quality,
and clutch hitting on scoring, we fit the general ordinal
logistic model of the form

log

(
θc

1 − θc

)
= γc + xβ,

where θc is the probability of scoring at least c runs, and
x is the covariate of interest (either of the categorical or
measurement type). To understand how the covariate
influences run scoring for all MLB teams, we use the
following two-step modeling approach.

1. The ordinal logistic model is first fit separately
to run-scoring data for each of the 30 teams.
One obtains the regression effects β̂1, ...β̂30

with associated estimated standard errors σ̂1, ...

σ̂30.
2. The multilevel exchangeable model in Section

2.1 is used to simultaneously estimate the regres-
sion effects. We assume the estimated covariate
effect β̂j is normal with mean βj and stan-
dard error σ̂j . Once the estimates β̂1, ...β̂30 are
computed, we are interested in simultaneously
estimating the set of true effects β1, ..., β30. The
improved estimate of the covariate effect for the
jth team

β̂ML
j = 1/σ2

j

1/σ2
j + 1/τ̂2

β̂j + 1/τ̂2

1/σ2
j + 1/τ̂2

β̂C

is a compromise between the individual estimate
β̂j and a combined estimate β̂C. The size of the
shrinkage of the individual estimates towards the
combined estimate depends on the size of τ̂, the
spread of the true effects {βj}.

4.2. Home versus away effects

To consider a team’s scoring advantage of playing
at home, write the logit of the probability of scoring at
least c runs by

log

(
θc

1 − θc

)
= γc + HOME × β,

where the variable HOME is equal to 1 if the team
is playing at home, and HOME = 0 otherwise. If one
computes the difference in the logits of the probability
of scoring at least c runs at home θH

c , and away θA
c , one

obtains

log

(
θH
c

1 − θH
c

)
− log

(
θA
c

1 − θA
c

)
= β,

or (
θH
c

1 − θH
c

)/(
θA
c

1 − θA
c

)
= exp(β).

This ordinal regression model is initially fit to run-
scoring data for all teams in the 2013 season and one
obtains the covariate estimate β̂ = 0.032. The interpre-
tation is that the ratio of the odds of scoring at least c

runs at home and away is equal to exp(0.032) = 1.032.
Specifically, the probability that a team scores at least
one run in an inning is increased by 3% at home, the
probability a team scores at least two runs in an inning
is increased by 3%, and so on.
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Fig. 4. Individual and multilevel home field run effects for all teams. The black line represents the individual estimate plus and minus the
standard error and the red line represents the multilevel estimate plus and minus the standard error.

Since ballparks are known to have a significant
impact on scoring, it is natural to fit this home/away
model for each of the 30 teams. Figure 4 displays the
individual estimates of the parameters β1, ..., β30 as
black dots where the endpoints of the bars correspond
to the estimates plus and minus the standard errors. As
expected, the individual home/away estimates show
substantial variability from the New York Mets (β̂j =
−0.31) to the Colorado Rockies (β̂j = 0.52).

Next we apply the multilevel model of Section
2.1 to simultaneously estimate the 30 home effects
β1, ..., β30. One obtains the multilevel estimates µ̂ =
0.071 and τ̂ = 0.114. The estimate µ̂ represents an
average ballpark effect and τ̂ is an estimate at the spread
of the true ballpark effects. Here the multilevel model
estimates of {βj} shrink the individual estimates 52%
of the way towards the combined estimate µ̂. The red
bars in Fig. 4 show the posterior means plus and minus
the posterior standard deviations. Since the size of the
shrinkage is relatively small, this indicates that there is
sizeable variation between the true home park effects.

4.3. Pitcher effects

The same ordinal regression approach can to be used
to learn about the pitcher effect on team run-scoring.
The logit of the probability of scoring at least c runs in
a half-inning is given by

log

(
θc

1 − θc

)
= γc + PITCHER × β,

where the variable PITCHER is a measure of the qual-
ity of the pitcher who starts to pitch the half-inning.

The challenge in this approach is to find a good
measure of pitcher quality. Many pitchers are of the
relief type with a small number of plate appearances,
and the measurements of pitcher quality typically show
high variability. We use a multilevel model approach to
obtain improved estimates of pitcher quality and these
improved estimates are used as covariates in the ordinal
model for run scoring.

To begin, we use a run value approach illustrated in
Albert and Bennett (2003), Keri et al. (2007) and Tango



J. Albert / Beyond runs expectancy 13

−0.04 −0.02 0.00 0.02 0.04

0
5

10
15

20
25

30
35

Pitcher Ability

Fig. 5. Histogram of abilities of all pitchers in 2013 season.

et al. (2007) to measure the quality of all pitchers who
played in the 2013 season. For each plate appearance
(PA), we measure the run value as

RUNS = Run Potential after PA

−Run Potential before PA + Runs Scored,

where the run potential values come from the runs
expectancy matrix (see Table 1) using 2013 season
data. For the jth pitcher in the 2013 season, we compute
the mean run value ȳj and the number of PA’s nj . We
assume that ȳj is approximately normally distributed
with mean µj and standard error σ/

√
nj , where σ is

estimated using all of the run values for the season. If
we have N pitchers, then we estimate the population
means µ1, ..., µN by use of an exchangeable multilevel
model (see Section 2) and the corresponding multi-
level estimates µ̂1, ..., µ̂N are used as surrogates for
the qualities of the N pitchers in the ordinal regression
model.

Figure 5 displays a histogram of the run value mea-
sures of the 679 pitchers in the 2013 season. These
multilevel estimates shrink the individual mean run
value estimates towards the overall value, the degree of
shrinkage depending on the number of batters faced.
For pitchers who faced fewer than 100 batters, the
shrinkage exceeds 80%; for a starter facing 900 batters,
the shrinkage was only 35%. In this particular season,
Clayton Kershaw stands out with a run value mea-
sure of −0.036 – since he faced 934 batters, he saved
934 × −0.036 = −33.6 runs during the 2013 season.

If the ordinal regression model with pitcher qual-
ity covariate is fit to data for all teams, one obtains

the estimate β̂ = 19.51. The standard deviation of all
pitcher abilities is 0.012. So if the pitcher’s ability
measure is increased by one standard deviation, one
predicts a team’s log odds of scoring runs to increase
by 19.51 × 0.012 = 0.23.

By fitting the multilevel ordinal regression model,
we learn about the pitcher effects for all 30 teams.
Figure 6 displays individual (team) effects by black
bars and the multilevel model estimates are displayed
by red bars. The individual estimates show substantial
variation. For example, Seattle’s regression coefficient
is β̂j = 9.84 and Philadelphia’s coefficient is β̂j =
28.24, indicating that the Phillies were much more
able to take advantage of poor pitching than Seattle
in the 2013 season. The multilevel estimates in this
case shrink the individual estimates about 76% towards
the average value. Seattle and Philadelphia’s pitcher
effects, under the multilevel model, are corrected to
16.85 and 21.05, respectively. These multilevel esti-
mates are better reflections of the true team pitcher
effects than the individual team estimates, and would
lead to better predictions of run-scoring against pitch-
ers of different abilities.

4.4. Advancing baserunners home (clutch effects)

Run scoring generally is viewed as a two-step pro-
cess. A team places runners on bases and then these
runners are advanced to home. There is a special focus
in the media on advancing runners who are in scoring
position (on second and third base). One commonly
hears about the number of runners left on base and the
proportion of runners in scoring position who score. Do
teams really differ in their abilities to advance runners
from scoring position?

To address this clutch hitting question, an ordinal
regression model is constructed. For each half-inning,
one records the total number of (unique) runners SP

who are in scoring position (either on second or third
base) and the number of these runners R who eventu-
ally score. (Note that R can be smaller than the number
of runs that score in the half-inning since runners who
score don’t need to be in scoring position.) As before,
we classify R into the categories 0, 1, 2, 3, and “4 or
more”, and consider the ordinal regression model

log

(
θc

1 − θc

)
= γc + SP × β,

where θc is the probability that R is at least c. This
model is first fit to data for all teams. One obtains
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Fig. 6. Individual and multilevel pitcher effects for all teams. The black line represents the individual estimate plus and minus the standard error
and the red line represents the multilevel estimate plus and minus the standard error.

the estimate β̂ = 2.395 which indicates that for each
additional runner in scoring position, the log odds of
scoring runs is increased by 2.395.

To see how this clutch hitting statistic varies between
teams, this ordinal regression model was fit separately
for all teams. Anaheim and the New York Mets had the
smallest and largest regression estimates of β̂j = 2.19
and β̂j = 2.60, respectively. This indicates that the
Mets were the best team in baseball in 2013 from a
clutch-hitting perspective and Anaheim was the worst.
However, when we use the multilevel model to simulta-
neously estimate the true clutch regression coefficients
for all teams, we learn that this observed variability in
clutch measures is primarily due to chance. Figure 7
displays the individual and multilevel clutch estimates
for all teams. Here the shrinkage is about 93% and
we see that the individual clutch estimates are shrunk
almost entirely towards the common value in the mul-
tilevel model fit. The interpretation is that although
teams obviously have different abilities to score runs,

teams appear to have similar abilities to advance run-
ners in scoring position.

5. Multiple regression approach

5.1. Introduction

In our exploration of the effects of covariates on
run-scoring, we focused on the application of an ordi-
nal regression model with a single covariate. This was
done since it is simpler to describe the covariate effects
and the shrinkage behavior of the multilevel model.
A natural extension of this approach is to model run-
scoring of all teams by a large ordinal regression model
where one includes all covariates that one believes have
an impact on run scoring. Using our general notation,
one can write the ordinal logistic model as

log

(
θ
j
c

1 − θ
j
c

)
= γj

c + x1βj1 + ... + xkβjk,
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Fig. 7. Individual and multilevel clutch effects for all teams. The black line represents the individual estimate plus and minus the standard error
and the red line represents the multilevel estimate plus and minus the standard error.

where θ
j
c represents the probability of scoring at least

c runs for the jth team, x1, .., xk represent k possible
covariates (such as league, ballpark, and pitcher qual-
ity), and βj1, ..., βjk represent the regression effects for
the jth team. In the multilevel modeling framework,
one could assign γ1

c , ..., γN
c a common multivariate

normal distribution, and likewise assume each of the
sets of team covariate effects {βjk, j = 1, ..., N} come
from a common normal distribution. This model is
more complicated to fit due to the large number of
unknown parameters, but it would accomplish the same
smoothing effect as demonstrated in this paper. Team
scoring distributions would be shrunk towards an over-
all scoring distribution – this is accomplished by the
common multivariate normal distribution played on the
bin cutpoint parameters γ

j
c . In a similar fashion, team

effects for a particular covariate such as pitcher quality
would be shrunk or moved towards a common covari-
ate effect. This particular approach is promising and
can help us better understand relevant covariates that
affect run scoring.

5.2. Example

To illustrate this multiple regression approach, sup-
pose we are interested in learning about the home and
inning effects on team run scoring. For the jth team,
we write the ordinal regression model as

log

(
θ
j
c

1 − θ
j
c

)
= γj

c + HOME βj1 + INNING βj2,

where HOME = 1 if the batting team is playing
at home (HOME = 0 otherwise), and INNING = 1
if the team is batting in the first through fifth
innings (INNING = 0 for later innings). We assume
that the home and inning effects for the 30 teams,
(β11, β12), ..., (β30,1, β30,2) come from a common
bivariate normal distribution.

This model was fit on the 2013 season data. One
can represent an estimate of the pair (βj1, βj2) by an
ellipse that contains the unknown pair of parameters
with 95% probability. Figure 8 displays the estimates of
the home and inning effects where one uses individual
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Fig. 8. Individual team estimates of home/away and early/late inning
effects from ordinal multivariate regression model for 2013 season.
Each ellipse represents the location of a 95% confidence region and
the region corresponding to Colorado is labelled.

Fig. 9. Multilevel ordinal regresssion model estimates of home/away
and early/late inning effects for 2013 season. Each ellipse represents
the location of a 95% confidence region and the region corresponding
to Colorado is labelled.

regression models for the 30 teams, and Fig. 9 dis-
plays estimates of the same effects using the multilevel
regression model. Note that there are general tenden-
cies for teams to score more at home and in early
innings (the ellipses tend to be located in the upper-
right section of the graph), but the locations of the
ellipses for the multilevel model estimates tend to be
shrunk towards a common estimate.

6. What covariates are relevant to run-scoring?

The ordinal regression approach seems advanta-
geous to the expected runs approach for understanding
team run-scoring, and we have illustrated the use of
several covariates such as home/away, pitcher quality,
and ability to advance runners in scoring position. But
there needs to be a more careful look at all of the team
attributes that affect run-scoring. One believes that this
modeling approach can be extended to handle many
other covariates.

Home/away affect. The home-away run-scoring
effects documented actually have several dimensions.
A team scores more in their ball park partly due to
physical and weather attributes of their ballpark, but
there is evidence to suggest that umpires may favor
the home team in the calling of balls and strikes. How
much of the home/away effect is due to each factor?

Individual batter effects. This paper has focused on
run-scoring of teams. But a team’s batting lineup con-
sists of players who aid run-scoring by their ability to
get on-base and other players contribute by advancing
runners home by extra-base hits. One typically evalu-
ates the contribution of individual hitters by run value,
but these run value calculations are based on league
averages. One would speculate that one could get bet-
ter evaluations of hitter runs contributed by using run
distributions individualized for the player’s team.

Base-running effects. As documented in the recent
World Series between the Royals and the Giants, runs
are often scored by good runner advancement. Several
of the runs were set up by a runner on second base
who advanced to third on a sacrifice fly. Teams clearly
differ with respect to their ability to steal and take the
extra base, and one would be interested in measuring
the effect of base-running on run scoring for all teams.

Situational effects. Runs are scored within a context
of the opposing pitcher and defense, and the inning.
The measurement of pitcher quality used here is actu-
ally a measurement of picher quality and team defense.
How can one isolate the effect of these two effects in
run scoring? There is a recent movement to shifting
the infielders for specific hitters – what is the value of
this shift from the viewpoint of runs? During different
innings, teams may have different goals towards run-
scoring. In close games, the objective might be to score
a single run. In other situations, the goal might be to
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score multiple runs. Do teams differ with their ability
to score a single run?

7. Summary and concluding comments

The primary objective of this work is to provide
a better understanding of the run-scoring patterns in
Major League Baseball. Instead of focusing on the
mean number of runs scored in a half-inning, we focus
on the probability distribution of runs scored. We are
interested in how this run-scoring distribution varies
among teams and the effect of various covariates such
as the ballpark, pitcher/defense, and “runners in scor-
ing position” situations.

The primary method is ordinal regression of the
multinomial run-scoring outcome and the use of mul-
tilevel modeling to estimate run-scoring over different
groups. One finding is that there are some covariates
such as ballpark where there are clear team-specific
run-scoring advantages. This is not surprising since
it is well-known that Coors Field (home of Colorado
Rockies) is very advantagous for run-scoring and other
parks such as Citi Field (home of the New York Mets)
are more restrictive for scoring runs. But there are
other covariates such as advancing runners in scor-
ing position where there are little differences between
teams in scoring runs. It should be clarified that we
do observe differences in teams’ advancing runners in
scoring position, but there is little evidence to suggest
that teams have different clutch-hitting abilities. If the
media understands this conclusion, then there would
be less discussion about teams’ batting performances
when runners are in scoring position. The goal of future
work to find suitable covariates such as the ones sug-
gested in Section 5.2 that have a significanat impact
on run-scoring, and the knowledge of these covariates
would be helpful for teams building an offense.
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Appendix: Estimating collections
of multinomial data using an
exchangeable model

In Section 2.2, one observes W1, ..., W30, vectors
of runs scored for the 30 teams and one assumes that
Wj = (Wj

1 , ..., W
j
5 ), the number of runs scored in the

bins 0, 1, 2, 3, and 4 or more is multinomial with prob-
ability vector pj = (pj

1, ..., p
j
5). Under the multilevel

exchangeable model, we assume that p1, ..., p30 rep-
resent a random sample from a Dirichlet distribution
of the form

g(p) = 1

D(Kη)

5∏
i=1

p
Kηi−1
i ,

where

D(Kη) =
∏5

i=1 �(Kηi)

�(K)
,

is the Dirichlet function and �() is the gamma function.
The model is completed by assigning the mean vector
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η = (η1, ..., η5) and the “precision” parameter K

priors – we assume that one has little information about
these parameters and that leads to the prior density of
the form

g(η, K) = 1

(1 + K)2 , K > 0.

One estimates the precision parameter K from its
marginal posterior distribution. One can show that the
posterior density of (K, η) has the form

g(η, K|data) ∝
30∏

j=1

(
D(Kη + Wj)

D(Kη)

)
1

(1 + K)2 .

One estimates (K, η) by the posterior mode, that is,
the value (K̂, η̂) that maximizes the marginal posterior
density g(K, η|data). These estimates are used in com-
puting the multilevel estimate at the probability vector
of team j given in Section 2.2 as

p̂
j
ML = Nj

Nj + K̂
p̂j + K̂

Nj + K̂
η̂.

The multilevel estimate p̂
j
ML is a compromise between

the individual team estimate p̂j = Wj/Nj and the
combined estimate η̂ ≈∑Wj/

∑
Nj .


