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Abstract.

Background: The MDS-UPDRS (Movement Disorders Society — Unified Parkinson’s Disease Rating Scale) is the most
widely used scale for rating impairment in PD. Subscores measuring bradykinesia have low reliability that can be subject to
rater variability. Novel technological tools can be used to overcome such issues.

Objective: To systematically explore and describe the available technologies for measuring limb bradykinesia in PD that
were published between 2006 and 2016.

Methods: A systematic literature search using PubMed (MEDLINE), IEEE Xplore, Web of Science, Scopus and
Engineering Village (Compendex and Inspec) databases was performed to identify relevant technologies published until
18 October 2016.

Results: 47 technologies assessing bradykinesia in PD were identified, 17 of which offered home and clinic-based assessment
whilst 30 provided clinic-based assessment only. Of the eligible studies, 7 were validated in a PD patient population only,
whilst 40 were tested in both PD and healthy control groups. 19 of the 47 technologies assessed bradykinesia only, whereas 28
assessed other parkinsonian features as well. 33 technologies have been described in additional PD-related studies, whereas
14 are not known to have been tested beyond the pilot phase.

Conclusion: Technology based tools offer advantages including objective motor assessment and home monitoring of
symptoms, and can be used to assess response to intervention in clinical trials or routine care. This review provides
an up-to-date repository and synthesis of the current literature regarding technology used for assessing limb bradyki-
nesia in PD. The review also discusses the current trends with regards to technology and discusses future directions in
development.
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Available tools for assessment of bradykinesia are
subjective (clinical rating scales) or objective (tech-
nology based tools or TBTs). Rating scales for the
assessment of bradykinesia include MDS-UPDRS
(Movement Disorders Society — Unified Parkinson’s
Disease Rating Scale) [2] and MBRS (Modified
Bradykinesia Rating Scale) [3]. Although results
are reproducible, rating scales such as the MDS-
UPDRS are subject to both inter- and intra-rater
variability, which is an important source of error in
clinical trials [2]. In particular, measures of bradyki-
nesia in the UPDRS part III (motor section) suffer
from low reliability [4-7]. Assessing bradykine-
sia with the UPDRS relies on a variety of factors
such as reductions of speed and amplitude, hesita-
tions, motor arrests and fatigue to produce a single
score. Differential priority can be placed on individ-
ual components by separate raters, and the MBRS
was introduced to clarify each component and rate
these separately [3]. Items for rating bradykine-
sia, such as finger tapping, are amongst the most
difficult items to rate on scales [8]. It is easier
to rate bradykinesia in advanced Parkinson’s dis-
ease (PD) compared with mild/moderate PD [9].
Observations about efficacy of treatment depend
on clinical examination, records of medication tim-
ing, patient’s subjective reporting of symptoms and
ability to perform activities of daily living [9]. Iden-
tification of symptoms through history-taking can
be mired by recall bias, along with difficulty in
differentiating normal, dyskinetic and bradykinetic
states [10].

TBTs aim to complement existing clinical mea-
sures by providing objective, quantifiable scores of
motor dysfunction that can be reviewed during rou-
tine clinical visits or in the home environment.
Bradykinesia severity may fluctuate in response to
medication, meaning that what is observed in the
clinic may not be indicative of day-to-day function.
Objective measurement of bradykinesia enables clin-
icians to longitudinally monitor patients and assess
treatment outcomes leading to adjustment in medica-
tion regimens if necessary.

Recent systematic reviews have assessed the clini-
metric validity [11] and technological readiness
level (TRL) [12] of technologies monitoring PD-
related symptoms. Here we systematically explore
the options and features of contemporary TBTs
(2006-2016) that measure limb bradykinesia. The
review aims to provide a repository of current TBTs
for evaluating limb bradykinesia in PD. We also dis-

cuss current efforts in the development of TBTs and
possible future directions.

METHODS

Methodology for review of literature

PRISMA-P (preferred reporting items for system-
atic review and meta-analysis protocols) guidelines
for systematic reviews were followed throughout the
study [13]. To ensure a rigorous search, the follow-
ing databases were used to retrieve relevant studies:
PubMed (MEDLINE), Web of Science, Scopus,
IEEE Xplore and Engineering Village (Compen-
dex and Inspec). The date of the final search was
18th of October 2016 and only papers written in
English were reviewed. A step-by-step guide to the
search method using PubMed is provided in Fig. 1.
The final search query used in the other databases
is included in the supplementary information file
(S1).

One author (H.H) screened the articles for eli-
gibility in the bibliography pool of the search
engine results. Duplicates found whilst searching
the multiple databases were removed using the Sys-
tematic Review Assistant De-duplication Module
(SRA-DM) [14]. Inclusion and exclusion crite-
ria were applied to the titles and abstracts, and
articles were screened accordingly. Full text arti-
cles were retrieved for eligible studies and studies
whose abstracts did not provide sufficient informa-
tion for exclusion. References were hand-searched
to find studies potentially missed by the search
method. An auto-alert function was set in the search
feature to provide a notification of new submis-
sions.

Inclusion criteria

Studies that fulfilled the following inclusion crite-
ria were included in the review:

(a) Technology had been used in patients with PD.
(b) Technology assessed limb bradykinesia.

(c) Published in the English language.

(d) Published between 2006-2016.

Technology was defined according to the Oxford
dictionary as electronic “machinery and devices
developed from scientific knowledge” [15].
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1.Using the advanced search feature, the terms “Parkinson”,
“Parkinson’s”, “PD” and “Parkinsonian”, were searched for
and combined using the OR function. Search filter was
applied for publication dates from 01/01/2006 to 18/10/2016,
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Fig. 1. Flowchart for search methods used in PubMed (MEDLINE) database. See supplementary material for details of other searches.

Exclusion criteria

Studies were excluded from the review if they met
the following criteria:

(a) Technology was tested in non-PD population
only.

Technology was used to measure response
of an intervention only (e.g. deep brain
stimulation, repetitive transcranial magnetic
stimulation).

Technology was used to assess patient
suitability for advanced therapy referral
in PD.

Technology assessed other symptoms in PD
but not limb bradykinesia e.g. gait/body
bradykinesia, tremor, rigidity, postural imbal-
ance, nocturnal hypokinesia in sleep.

Sample size of PD patients in study was <5.
Editorials or review papers that did not report
new data, and conference proceedings that
could not be retrieved or whose abstracts
lacked essential information.

(b)

(©)

(d)

©)]
()

(g) Studies that did not use technology (includ-
ing timed tasks or non-technological tools) for
assessment of limb bradykinesia.

(h) Qualitative studies that utilised questionnaires
or scales only to assess feasibility of technol-
ogy in PD.

Data handling

Summary characteristics of eligible technology
from the final stage of the selection process were tab-
ulated. (Tables 1 and 2 in supplementary file SI).
The following information from eligible studies was
extracted: home and/or clinic-based assessment of
bradykinesia, type of technology, validation data, use
in additional PD studies, assessment of other PD-
related features, and types of movements assessed.
Studies were also assessed for selection and infor-
mation bias.

Selection bias was considered possible when:

(a) The PD population selected was not represen-
tative of the spectrum of severity of PD (unless
specified in the study aims).
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(b) PD patients were recruited from movement dis-
orders clinics or hospital in-patients.

(c) There was no mention of where PD patients or
controls were recruited from.

Information bias was considered possible when:

(a) Raters were not blinded to both the technol-
ogy performance and the clinical status of
patients.

(b) No mention was made of whether raters were
blinded to the patients’ clinical status and tech-
nology performance.

RESULTS

1510 potentially eligible articles were found after
removal of duplicates. After applying the inclu-
sion criteria 81 eligible studies were included
(see Fig. 2).

A summary of TBTs for limb bradykinesia can be
seen in Fig. 3.

Type of assessment

Of the 47 technologies assessing bradykinesia in
PD, 17 offered home and clinic-based assessment
[16-32] and 30 offered clinic/research centre-based
assessment only [33-62]. Of the 17 technologies
that offered home and clinic based assessment, 6
offered recurrent assessment of bradykinesia in PD
[16, 18, 24, 25, 28, 30] and 11 offered cross-
sectional assessment only [17, 19-23, 26, 27, 29,
31, 32]. Of the 6 that offered recurrent assess-
ment, 5 measured bradykinesia continuously [16,
18, 25, 28, 30] and one assessed bradykinesia 4
times per day [24]. Of the 30 technologies that
offer clinic/research centre-based assessment only, 29
provided cross-sectional assessment [33-53, 55-62]

> 553 duplicates removed and 1292 articles were

2066 total articles found across all databases®

;

221 eligible articles, 100 excluded on review of abstracts

Amongst those excluded:

-33 assessed PD-related features other than
bradykinesia

-18 tested use of technology after an intervention
-17 did not use technology in PD

-10 conference proceedings

-7 editorials and reviews

-6 presented no new data

-5 tested technologies in non-PD patients only

-4 utilised non-technological tools/timed tests

Hand searching of references of eligible included articles
and rejected reviews identified 23 additional studies, 10
of which were excluded

Amongst those excluded:

excluded based on title

121 full text articles reviewed, 53 were excluded and 68
included

Amongst those excluded:

-10 utilised non-technological tools/timed tests
-8 had sample size<5

-7 did not use technology in PD

-5 studies undertaken in non-PD population
-5 were not published in English

-4 assessed nocturnal hypokinesia

-5 presented no new data

-4 assessed PD related features other than bradykinesia
-2 conference proceedings

-2 qualitative studies

- 1 review

-4 assessed PD related features other than bradykinesia
-4 presented no new data

-1 not published in English

-1 qualitative study

A 4

81 total eligible studies (47 technologies) included in
final review, two studies included 2 cohorts

Fig. 2. Flowchart for systematic literature search across the database [*PubMed: 960 articles, IEEE Xplore: 132 articles, Web of Science:

598 articles, Scopus: 298 articles, Engineering Village: 78].
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Measurement tools for bradykinesia
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Home-based assessment
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e Smartphone app [33/1431[49](58]
e Triaxial accelerometer [341148]

\

Non-home based assessment

e Digitomotography using Q-motor [41]
e SensHand V1 wearable device 5]

e Kinesia system [18]

® Touch-screen telemetry
device 9

o BRAIN tap test (201

e CV motion analysis 21

e Microsoft Kinect [22]

e Smartphone app 231241127

e Computer peripherals [26]

e PERFORM system [27]

e Physilog [28]

e Computer-based
assessment system [29]

e SENSE-PARK system [30]

e 9DoF sensor (33

e Gyrosensor [43]

e QDG [38]

e Smart glove [47)

e CATSYS 137

e SensHand V1 wearable
device 1]

e Uni-axial accelerometer 2

¢ SEMG [40]

©SMART motion system [57]

eBody sensor network [62]

© 3D motion capture
camera system [30]

e 3D motion analysis system [12]

e Electromagnetic tracking device %7

e ATP on a handheld computer device 54

e Bradykinesia assessment system 44

e Finger electrical stimulation system (53]

® 3D ultrasonic measurement system [46]

e Magnetic detection system [39]

® MotionMonitor magnetic tracking system 59
e Synertial motion capture system [56]

e Window-based genetic programming classifiers [61]
® Motus motion analysis system [60]

e Finger tapping measurement system [38]

e neuroQWERTY (1
e 3D depth sensor [32]

Fig. 3. Summary diagram of measurement tools for limb bradykinesia [MDS-UPDRS — Movement Disorders Society Sponsored Revision
of the Unified Parkinson’s Disease Rating Scale, MBRS — Modified Bradykinesia Rating Scale, PKG- Parkinson’s KinetiGraph, AHTD —
At Home Testing Device, BRAIN tap test — BRadykinesia Akinesia INcoordination tap test, CV motion analysis — Computer Vision motion
analysis, PERFORM - A sophisticated multipaRametric system FOR the continuous effective assessment and Monitoring of motor status in
parkinson’s disease and other neurodegenerative diseases, 9DoF sensor — 9 Degrees of Freedom sensor, QDG — Quantitative Digitography,
ATP — Alternating Tapping Performance, CATSYS — Co-ordination Ability Testing System, SEMG- Surface electromyography].

and 1 provided recurrent (4 times daily) assessment
[54].

Type of technology used

16 studies utilised IMUs (inertial measurement
units — “a self-contained system that measures linear
and angular motion usually with a triad of gyro-
scopes and accelerometers” [63]) for the evaluation of
bradykinesia [16, 18, 25, 28, 34, 35, 38, 39, 43, 44,
47, 48, 51-53, 62], 9 utilised smartphones [19, 23,
24,27, 33,45, 49, 54, 58], 10 utilised motion analy-
sis systems [21, 22, 32, 42, 46, 50, 55, 57, 59, 60], 4
used computer-based objective assessments [17, 20,
29, 31], two used a combination of the above methods
[30, 56] and 6 used other types of technology [26, 36,
37,40, 41, 61].

Use in other PD studies

33 technologies had been used in additional
studies other than the initial proof-of-concept/pilot
study [16-22, 24, 25, 28, 30, 34, 3644, 46, 48,
53-57, 59-62]. No additional reports were found

for 14 technologies [21, 24, 27, 29-31, 33, 43, 45,
47-50, 56].

Assessment of other PD-related features in
addition to bradykinesia

28 technologies assess PD-related features in addi-
tion to bradykinesia [16-19, 21-25, 27-30, 34, 36,
37,4042, 44,47, 49, 53, 55, 57, 58, 60, 62]. Among
these, 7 measured dyskinesia [16, 19, 25, 41, 64-66],
16 measured tremor [17, 23, 25,27, 28, 30,47,49, 58,
67-73], 12 assessed gait [20, 23, 24, 29, 46, 66-72],
6 assessed rigidity [29, 36,47, 58, 74, 75], 2 assessed
speech [17, 24], 3 assessed cognition [27, 30, 76],
and 3 assessed sleep [30, 77, 78].

Validation

39 out of the 47 eligible technologies were capable
of differentiating PD patients from healthy controls
[16,18-22, 24,26, 28, 29, 31-44, 46-57, 59-61]. 27
technologies were validated through correlation with
MDS-UPDRS part III motor scores or sub-scores
[16, 18, 20, 23, 27, 28, 31, 33, 36-38, 41-44, 46,
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50-58, 60, 79]. 10 studies used classifiers (defined as
“assignment of input observation data to a category
e.g. diagnostic class” [80]) to study objective per-
formance of the model in predicting MDS-UPDRS
part III scores [19, 21, 24, 25, 32, 35, 48, 61, 62,
81]. 4 technologies were validated by comparison
with other objective methods (e.g. dot slide method
[16], gold-standard motion capture systems [22, 50]
and mechanical tappers [33]). 16 studies described
clinimetric properties of their respective technology
— repeatability [19, 27, 54, 56, 82, 83], responsive-
ness [54, 83], sensitivity and specificity [16, 20, 24,
31, 36, 37, 46, 48, 52, 54, 58].

Movements assessed

33 of the 47 technologies assessed finger tapping
movement [3, 17, 20-22, 24, 25, 27, 28, 31-39,
41-43, 45, 47-55, 57, 61]. 7 technologies measured
hand grasping [3, 22, 32, 34, 44, 45, 51] and 14
technologies measured pronation/supination move-
ments [3, 22, 27, 28, 32, 34, 35, 37, 51, 52, 56,
58-60]. With respect to lower limb bradykinesia,
only 4 technologies measured toe tapping [18, 22,
35, 84] and 3 measured leg agility [18, 22, 62].
5 technologies enabled monitoring of bradykinesia
continuously during activities of daily living [16, 25,
28, 30, 85]. Other miscellaneous movements mea-
sured include spiral drawing [19, 49], pursuit tracking
[26, 29], step tracking [26] and finger-to-chin move-
ments [55].

Further information on included studies

40 studies included both PD patients and controls
as part of the study [16, 19-22,24-26, 28, 29, 31-44,
46-61], whereas 7 studies were validated in a PD
population only [17, 18, 23, 25, 30, 45, 62]. 2 stud-
ies also included patients with atypical parkinsonian
syndromes — 1 with PSP (progressive supranuclear
palsy) [42] and another both PSP-R (Richardson’s
syndrome) and MSA (multiple system atrophy) [53].
1 study included patients with ET (essential tremor)
as well as PD [52].

Of 29 task-based studies, 13 described sequence/
learning effects [17, 19, 20, 24, 27, 35, 38, 39, 42,
44, 45, 54, 56]. 8 explored feasibility regarding user
compliance and/or acceptability [17, 24, 25, 27, 30,
51, 54, 85]. Only 6 studies described mechanisms
to preserve privacy of patient data [17, 24, 25, 41,
45, 53].

Bias

Selection bias was felt to be possible in 24 studies
[16, 18, 19,21-23, 27, 30, 32, 34, 35, 37, 39, 43, 46,
50-52, 55, 56, 58, 59, 61, 62]. Information bias was
felt to be possible in 17 studies [16-21, 24, 27, 28,
30, 33, 42, 50, 54, 55, 57, 58, 60].

DISCUSSION

Here we describe a comprehensive list of TBTs
which have been used to measure limb bradykinesia
in PD. We used a thorough search strategy to iden-
tify all relevant technologies and critically appraised
each of these in the context of their aim (to mea-
sure limb bradykinesia). It is clear that substantial
heterogeneity exists between available technologies,
not least in the methods they employ, but also the
extent to which they have been validated, and also
their potential availability and accuracy.

TBTs can augment existing instruments for assess-
ment of bradykinesia in the following ways:

1) Variables generated from subjective scales are
ordinal in nature and might not adequately cap-
ture motor deterioration. For example, there are
multiple potential changes that can occur in see-
ing progression from a score of 1 on finger
tapping to a score of 2 using the UPDRS, or
further still from stage 2 to 2.5 on the modified
Hoehn and Yahr scale (a separate global rating
scale). Many of the TBTs described here gener-
ate data on the specific motor impairment and
in a continuous quantitative manner rather than
on an ordinal scale.

2) For some TBTs, the assessment can be per-
formed remotely by the patient and data can
be accessed from a central source by the
treating physician. This has the potential to
reduce frequency and duration of patient visits
[86].

3) TBT’s are not typically subject to the same
inter- and intra-rater variability of rating scales
and can provide objective, quantitative data in
clinical trials to reduce variability between dif-
ferent raters and sites.

4) Clinical trials in the early stages of PD include
patients with ratings of 0-1 in motor tasks of the
UPDRS [83]. These scores are susceptible to a
floor effect, wherein subtle changes as a result
of the drug (or placebo) might not be captured.
Such a floor effect may have affected results of
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past clinical trials with disease modifying aims
[10].

5) Again, in the research setting, TBT’s may have
the potential to identify motor dysfunction prior
to current diagnosis, which may in turn be rel-
evant in future clinical trials. For example, in a
study of 78 patients with REM sleep behaviour
disorder, which is a strong risk factor for a num-
ber of neurodegenerative diseases, objective
motor dysfunction was observed between 4-8
years prior to diagnosis of parkinsonism
[87].

Cross-sectional assessments provide ‘snapshots’
of motor function between clinic visits. Whilst
most of the studies included in this review offer
cross-sectional assessments (85%), there has been
successful implementation of longitudinal assess-
ment in recent years [16, 18, 25, 28, 30].

Longitudinal assessment can help in the early
detection of subtle motor change, which may go
unnoticed by both physician and patient, especially
where it may be transitory in nature [88]. Later
in the course of the disease, unpredictable fluctua-
tions in response can occur which are more difficult
to manage and determine accurately based on his-
tory in clinical consultations, particularly if there
is a language barrier between patient and clinician.
In addition, if patients happen to be ‘on’ during
clinic visits this can influence treatment decisions
more strongly than the accompanying history or
information obtained from diaries or questionnaires
[10]. It has to be stressed that many TBTs in this
review (30%) have been validated in small sub-sets
of patients with PD and have not been followed up
with results from large-scale studies.

TBTs such as SENSE-PARK system, Kinesia sys-
tem, PKG, Physilog and PERFORM system offer
continuous remote monitoring of PD patients, which
enables monitoring of fluctuations throughout the
day in a “real world” environment i.e. at home or
at work, as opposed to cross-sectional assessment.
Software Applications (Apps) are now available on
smartphones and offer the advantage of testing with-
out purchase of hardware by patients, clinicians or
researchers [23, 24, 27, 30, 33, 45, 49, 58]. mPower
is an observational study in a large cohort conducted
using smartphones, assessing feasibility of remote
assessment for tracking daily changes in symptom
severity [24, 76]. Data from the study have also been
released enabling access by research communities
around the world [76].

36% of the TBTs offered home-based monitor-
ing of patients. In addition to the above advantages,
home-based testing may also provide opportunities
to patients who are otherwise unable to participate
in clinical trials due to work or geographical limi-
tations [17, 86]. Home-based monitoring was found
to be cost-effective in terms of improvement in func-
tional status, motor severity, and motor complications
in arecent prospective study [89]. Whilst home-based
testing offers certain advantages, it may be difficult
for patients with apathy and/or depression, both of
which are common in PD, to find the motivation
to complete tasks for remote monitoring. Moreover,
testing may be inaccurate if performed without super-
vision, and therefore patients may need to be observed
performing tests, at least at the outset.

The clinical value of technology in addition to rou-
tine care in PD has been evaluated in a retrospective
analysis of 591 patients using the PKG device [90].
Significant improvements in patient symptoms were
observed and maintained over a 6 month period [90,
91]. This suggests that devices such as this can be used
successfully in addition to routine care to improve
outcome of PD management by guiding interven-
tions. A retrospective study examined the use of
wearable Kinesia technology for advanced therapy
referral (such as DBS (deep brain stimulation) and
LCIG (levodopa carbidopa intestinal gel)) for a year
and a half in 40 individuals [92]. It found that use
of kinematic data from remote monitoring, in addi-
tion to receiving standard care, resulted in higher
referral rate in the group of patients whose clini-
cians had access to monitoring reports in contrast to
the group who received standard care alone (63.6%
versus 11.8%, p<0.01) [92].

The majority (57%) of technologies assessing
bradykinesia were validated using correlation with
the MDS-UPDRS. Considering inter-rater variabil-
ity in the scale, and that differential priority is placed
on rating speed, amplitude and rhythm to produce
a single bradykinesia score [3], this represents a
clinimetric validation pitfall for objective measures
[93]. Moreover, a single cross-sectional rating score
might reflect the patient’s motor dysfunction at the
time of testing only. The symptoms of PD fluc-
tuate and scores may not correlate well with data
obtained from continuous objective monitoring of a
patient’s status [16]. The scores on the rating scale
may contribute more than objective measures do to
the margin of error in correlation coefficients. A
device that has higher correlation with the MDS-
UPDRS may not necessarily be better than one that
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Fig. 4. Diagram describing the Internet of Things (IoT) framework for home-based monitoring of PD using wearable sensors.

shows a weak correlation. In this light, accuracy
of a technology can be tested by evaluating the
technology’s own clinimetric properties (test-retest
repeatability, sensitivity, specificity, responsiveness,
feasibility, respondent and administrative burden etc).
Other studies utilised classifiers in conjunction to sen-
sors to objectively predict the performance of patients
on the bradykinesia subsection of the MDS-UPDRS
using machine-learning algorithms [19, 21, 24, 25,
32, 35, 48, 61, 62, 81], validation of motion capture
devices against gold-standard motion analysis sys-
tems [22, 50], and other objective methods such as
dot slide method [16] and mechanical tappers [33]
with other technologies.

Limitations

One of the limitations of this review is that a sin-
gle reviewer (H.H) undertook the search. However,
searching for relevant literature was undertaken in
five databases and references of eligible studies and
rejected reviews were hand-searched to ensure that
no studies were missed. Another limitation is that the
review explored limb bradykinesia without consider-
ing other features of PD. However, limb bradykinesia
is a core diagnostic feature of PD and is the most spe-
cific. It is important to also note that this field of study
is prone to small study bias/publication bias, in which
small positive studies are more likely to be published
than those with null results. With regards to the level
of dissemination of evidence we may not be aware
of studies that have failed, or whose negative or non-
significant results led to non-publication of research
findings.

Future directions

The Internet of Things (IoT) platform describes the
shift to the delivery of wearable sensors in terms of
diagnostics and treatment, which can be applied to
PD (see Fig. 4) [94]. It describes a scenario where
the use of wearable technologies would reduce the
burden on the current healthcare system, whilst at the
same increasing patient engagement and providing
personalised care. PD population-wide data could be
collected and validated using algorithms and data
management systems. Data generated from wearable
sensors could be sent via the internet to the physician,
enabling adjustment of medications based on objec-
tive measures obtained. Patients could access their
data and understand what it means, which may in turn
increase patient engagement, and reduce burden on
health care systems. MercuryLive, PERFORM, Hop-
kinsPD and game-based Health Monitoring System
(HMS) are examples of systems that are based on the
IoT framework [25, 95-97].

Only 6 out of 47 of studies in this review described
privacy of patient’s data. Access to patient’s per-
sonal data by third party represents a risk to the
successful implementation of the IoT framework and
mHealth apps (mHealth defined as “medical and pub-
lic health practice supported by mobile devices, such
as mobile phones, patient monitoring devices, per-
sonal digital assistants (PDAs), and other wireless
devices” [98]). This may take the form of medi-
cal identity theft through hacking or even financial
losses [99], the transmission of sensitive informa-
tion over unencrypted internet, logging of sensitive
information, component exposure threats and unen-
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crypted SD (security digital) card storage, all of
which raise concerns about secure treatment of
health data [100]. In a study of 2,062 respondents
regarding consumer perceptions of privacy in the
IoT, 52% of respondents described discomfort with
companies using data related to their bodies (e.g.:
wearables) and 58% described discomfort with com-
panies selling their data [101]. Amongst the various
age groups sampled, older segments of the population
described more extreme concerns around data privacy
[101].

A promising future direction is a shift from open
loop data capture to sensor-based closed loop tech-
nologies that can deliver treatments (infusion pumps,
sensors connected to DBS electrodes) [93]. REM-
PARK (Personal Health Device for the Remote and
Autonomous Management of Parkinson’s Disease)
[102] and HELP (Home-based Empowered Liv-
ing for Parkinson’s Disease patients) [103] are two
examples.

CONCLUSION

As technology evolves it is important that clin-
icians and patients have access to up-to-date
information about product availability and use. Reg-
ulatory processes must be streamlined to account
for rapid evolution providing that concerns around
data security are met, and cost effectiveness is incor-
porated into technology evaluation. Here we have
discussed the current state of the art in terms of TBTs
that measure bradykinesia, but regular updates will
be required to keep abreast of this rapidly changing
field. Regular updates to the tables in supplemen-
tary file S1 can be accessed at Google drive —
http://bit.ly/2bomTIM.
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