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Abstract. Studies of Parkinson’s disease (PD) patients, animal models and pathogenic actions of genetic mutations that cause
familial PD have established that neuronal bioenergetics are compromised with brainstem and midbrain monoaminergic neurons
being particularly vulnerable. Peripheral insulin resistance and diabetes in midlife may increase the risk of PD, and diet and
lifestyle changes that increase insulin sensitivity (exercise and intermittent energy restriction) can counteract neurodegenerative
processes and improve functional outcome in animal models. Insulin sensitizing glucagon-like peptide 1 (GLP-1) analogs
are beneficial in animal models of PD, and the results of an initial clinical trial in PD patients are promising. In addition to
improving peripheral and brain energy metabolism, exercise, intermittent energy restriction and GLP-1 analogs may bolster
neuronal adaptive stress response pathways that enhance neurotrophic signaling, DNA repair, proteostasis and mitochondrial
biogenesis.
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ABBREVIATIONS

GLP-1 : glucagon-like peptide 1
LRRK2 : leucine-rich repeat kinase 2
MPTP : 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine
PD : Parkinson’s disease

INTRODUCTION

This introductory section provides a brief synopsis
of the involvement of cellular and systemic metabolic
derangements in the pathogenesis of Parkinson’s dis-
ease (PD). Recent review articles on particular aspects
of this broad topic are cited, and those articles cite orig-
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inal research studies to which the interested reader can
refer. The vast majority of research on PD has focused
on substantia nigra dopaminergic neurons; this arti-
cle will therefore focus on those neurons. However, it
is clear that several other brain regions and neuronal
populations are affected in PD. Indeed, recent find-
ings suggest neurons in the brainstem are affected prior
to dopaminergic neurons and that pathology ‘spreads’
from brainstem to midbrain to cerebral cortex. As a
consequence, autonomic dysfunction resulting from
brainstem pathology typically occurs before motor
symptoms, while cognitive impairment associated with
cerebral cortex pathology occurs later in the disease
process [1–4]. I will therefore touch upon the effects
of bioenergetics interventions on some of the non-
dopaminergic systems affected in PD.

Advances in identifying the genetic basis of inher-
ited forms of PD have enabled investigations of
the molecular and cellular mechanisms of action
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of the disease-causing mutations [5, 6]. The most
intensively studied PD-causing mutations are auto-
somal dominant mutations in �-synuclein (PARK1)
and LRRK2 (PARK8), and autosomal recessive (loss-
of-function) mutations in Parkin (PARK2), PINK1
(PARK6) and DJ-1 (PARK7). In each case the mutation
impairs mitochondrial bioenergetics, and compro-
mises ubiquitin-mediated proteasome function and
autophagy [7]. These newer molecular genetics-based
findings dovetail nicely with previous studies of mito-
chondrial toxin-based models in which exposure of
rodents or non-human primates to chemicals that
inhibit complex 1 in the electron transport chain
(MPTP, rotenone and 6-hydroxydopamine) results in
degeneration of midbrain dopamine neurons [8]. More-
over, the genetic- and toxin-based models help explain
why age is the major risk factor for late-onset PD. Thus,
the major abnormalities that occur in neurons affected
in PD (reduced complex 1 function and accumula-
tion oxidatively damaged proteins) occur insidiously
during normal aging.

From worms and flies, to rodents and monkeys, the
aging process is accelerated by a high level of energy
intake and is retarded by energy restriction [9–11]. In
humans, being overweight increases the risk of all of the
major diseases that result in premature death including
diabetes, cardiovascular disease, stroke and cancers.
Even without overt obesity, a metabolic syndrome char-
acterized by insulin resistance, central adiposity and
dyslipidemia increases the risk for all of the latter dis-
eases. Recent findings suggest that the same metabolic
syndrome may increase the risk of Alzheimer’s dis-
ease (AD) and PD, particularly when the metabolic
syndrome develops in midlife [12]. It was suggested
20 years ago that insulin resistance/diabetes acceler-
ates deterioration of motor function, while inhibiting
the effectiveness of levodopa treatment in PD patients
[13]. Since then, multiple epidemiological studies sug-
gest that insulin resistanceanddiabetes increase the risk
of PD [14]. For example, a study of over 45,000 people
in Finland demonstrated a positive association between
body mass index and risk of PD [15], and a study in
Denmark showed that having diabetes increased the
risk of PD by nearly 40% [16]. The progression of
neuropathology in PD may be accelerated by insulin
resistance as suggested by a study showing that demen-
tia is associated with insulin resistance in PD patients
[17]. In addition to an elevation of peripheral insulin
levels, levels of circulating IGF-1 (another indicator
of a metabolically morbid state [18]) were elevated
in PD patients and were correlated with motor symp-
tom severity [19]. The latter findings suggest roles for

insulin/IGF-1 resistance in PD pathogenesis similar to
what has been proposed for AD [20].

Only a few studies have evaluated the impact of
insulin resistance on neuropathology and functional
outcome in animal models of PD. Rats fed a diabeto-
genic high fat diet for 3 months developed insulin resis-
tance and exhibited reduced evoked dopamine release
in the striatum which was associated with increased
iron deposition in the substantia nigra [21]. Feeding �-
synuclein mutant mice a diabetogenic diet (high in sat-
urated fat and fructose) exacerbated dysfunction of the
autonomic nervous system as indicated by decreased
parasympathetic control of heart rate associated with
increased �-synculein accumulation in parasympa-
thetic brainstem neurons [22]. These studies support
the notion that insulin resistance and diabetes endan-
ger dopaminergic neurons and other neurons affected
in PD, a possibility bolstered by findings from stud-
ies described in the next section in which exercise and
dietary energy restriction, two interventions that are
well-known to increase insulin sensitivity and protect
against diabetes, are beneficial in animal models of PD.

EXERCISE AND ENERGY RESTRICTION

The first approach to treating patients who are
overweight and/or have type 2 diabetes should be
to prescribe regular exercise and dietary restriction.
Exercise (particularly vigorous aerobic exercise) and
energy restriction (caloric restriction and intermittent
fasting) can result in striking improvements in glucose
and lipid metabolism, and can eliminate the need for
drugs [23, 24]. Exercise and energy restriction also
reduce blood pressure, resting heart rate, inflamma-
tion and oxidative stress [25–27]. Insulin sensitivity
of muscle and liver cells is enhanced by exercise and
energy restriction in animal models and human sub-
jects [25, 28, 29]. Exercise increases insulin-mediated
glucose uptake into muscle cells by several mecha-
nisms including stimulating the translocation of the
glucose transporter GLUT4 to the plasma membrane
[30]. Depolarization of the muscle cell membrane
results in Ca2+ release from endoplasmic reticulum
stores and Ca2+ influx through voltage-dependent
channels in the plasma membrane. The Ca2+ then
activates Ca2+/calmodulin-dependent protein kinase II
which up-regulates expression of GLUT4 [31]. In addi-
tion, exercise activates AMP-activated protein kinase
(AMPK) which promotes insulin-dependent glucose
uptake, mitochondrial biogenesis and fatty acid oxi-
dation [32]. However, GLUT3 is the major glucose
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Table 1
Exercise and dietary energy restriction activate a wide range of adaptive cellular responses in peripheral organs and the brain, resulting in
improved bioenergetics and brain function, and resistance to PD. Several major physiological responses to exercise and energy restriction

(particularly intermittent fasting) are similar, and occur in peripheral cells and in brain cells

Exercise Energy restriction*
Periphery (muscle, liver) Brain (neurons) Periphery (muscle, liver) Brain (neurons)

Insulin sensitivity Insulin/IGF sensitivity Insulin sensitivity Insulin/IGF sensitivity?
Ketogenesis Ketone utilization Ketogenesis Ketone utilization
Mitochondrial biogenesis Mitochondrial biogenesis Mitochondrial biogenesis Mitochondrial biogenesis?
VEGF, FGF2 BDNF, FGF2, VEGF VEGF, FGF2? BDNF, FGF2
Protein chaperones Protein chaperones Protein chaperones Protein chaperones
Autophagy Autophagy Autophagy Autophagy
DNA repair DNA repair DNA repair DNA repair?

Improved bioenergetics Improved bioenergetics Improved bioenergetics Improved bioenergetics
Improved fitness Enhanced neuroplasticity Improved fitness Enhanced neuroplasticity
Reduced oxidative damage Reduced oxidative damage Reduced oxidative damage Reduced oxidative damage
Proteostasis Proteostasis Proteostasis Proteostasis
Reduced inflammation Reduced inflammation Reduced inflammation Reduced inflammation
Cardioprotection Neuroprotection Cardioprotection Neuroprotection

*Energy restriction includes both daily caloric restriction and intermittent fasting [41, 139–145].

transporter in neurons and, with perhaps a few excep-
tions [33], most neurons express littleor no GLUT4.
While it is unclear if and to what extent GLUT3 is simi-
larly up-regulated by insulin in neurons, it was reported
that insulin can stimulate the translocation of GLUT3
to the plasma membrane of neurons and that this effect
of insulin enhances the ability of neurons to take up
glucose in response to membrane depolarization [34].

Multiple beneficial effects of exercise and energy
restriction on the brain have been documented
(Table 1). Both types of intermittent energetic chal-
lenges reduce the risk of cerebrovascular disease [35];
improved cognitive function [36, 37]; enhanced neu-
rogenesis [38]; and increased cellular stress resistance
[39]. On the other hand, a sedentary and indulgent
lifestyle increases the risk of stroke, and can impair
cognitive function, neurogenesis and stress resistance
[40–42]. Most of the studies of exercise, energy
intake and diabetes on the brain have focused on
the hippocampus, a brain region critical for learning
and memory. As many of the cellular and molecu-
lar changes that occur in response to exercise and
energy restriction are likely to occur in many differ-
ent brain regions, including those most affected in
PD, I will briefly summarize the results of studies
of the hippocampus. Exercise induces the expression
of brain-derived neurotrophic factor (BDNF), which
plays a key role in hippocampal synaptic plasticity,
neurogenesis and cognition [41, 43, 44]. Voluntary
running wheel exercise and caloric restriction can
increase the density of dendritic spines (synapses) in
dentate granule neurons of both normal mice and dia-

betic (leptin receptor mutant) mice [45]. Running and
intermittent fasting also increase hippocampal neuro-
genesis [46, 47].

Exercise can protect neurons against dysfunction
and degeneration in animal models relevant to AD [48,
49], Huntington’s disease (HD) [50, 51] (and see [52]
for negative effects of exercise in an HD mouse) and
stroke [53]. Intermittent fasting (alternate day food
deprivation) protected hippocampal neurons against
synaptic dysfunction in a transgenic mouse model of
AD [54], in rat and mouse models of HD [55, 56]
and in a mouse model of focal ischemic stroke [57].
Inasmuch as the demise of neurons in AD and HD
involves mechanisms shared with PD (oxidative stress,
impaired cellular energy metabolism and excitotox-
icity) it appears that exercise and energy restriction
counteract such generic aspects of neurodegenera-
tion. Indeed, studies have shown that exercise reduces
oxidative stress [58], up-regulates the expression of
genes encoding proteins involved in mitochondrial
biogenesis [59] and DNA repair [60] in brain cells,
and can protect neurons against excitotoxicity [55].
Intermittent fasting induces the expression of pro-
tein chaperones (HSP70 and GRP78), the antioxidant
enzyme heme oxygenase 1, and the neurotrophic fac-
tors BDNF and fibroblast growth factor 2 in several
brain regions [57, 61, 62]. In addition, intermittent fast-
ing increases levels of ketone bodies, which are known
to protect neurons against excitotoxic and metabolic
stress [63, 64]. BDNF, which is induced by both exer-
cise and intermittent fasting, stimulates mitochondrial
biogenesis [65] and DNA repair [60] in neurons which
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promotes synaptic plasticity and protects them against
oxidative stress.

Accumulating evidence suggests that regular exer-
cise can counteract the neurodegenerative process and
may reduce the risk of PD and improve functional out-
comes in PD patients [66–68]. In a prospective study
of 77,254 women and 48,574 men, 135 women and
252 men were diagnosed with PD during the follow-
up period. Vigorous exercise in early adult life was
associated with a highly significant 60% lower PD risk
in men, and a lower risk reduction in women [69]. In a
study of 213,701 participants in the NIH-AARP Diet
and Health Study, individuals who engaged in mod-
erate to vigorous physical activity from the ages of
35–39 or within the most recent 10 years had a 40%
lower risk of developing PD compared to those who
were relatively inactive [70]. On the other hand, anal-
ysis of data from 10,714 men in the Harvard Alumni
Health Study did not reveal a statistically significant
reduction in PD risk in those who exercised regularly,
although the number of subjects with PD was relatively
low [71].

Numerous studies have reported benefits of exer-
cise for PD patients. PD patients maintained on either
physiotherapist-supervised or self-supervised home
exercise programs exhibited improved symptoms dur-
ing an 8 week period [72]. High-intensity exercise for
8 weeks resulted in increased gait speed and stride
length and improved weight distribution during sit-to-
stand transitions in PD patients [73]. Moreover, the
PD patients in the high-intensity exercise group exhib-
ited improved corticomotor excitability as indicated
by lengthening of the cortical silent period in response
to single-pulse transcranial magnetic stimulation. In
another study of PD patients, a thrice weekly inten-
sive 60 minute exercise program and a once weekly
60 minute adaptive exercise program each resulted
in significant improvements in mobility and balance
[74]. High intensity treadmill exercise improves gait
and quality of life in PD [75], low intensity treadmill
exercise improves gait speed but not muscle strength,
whereas resistance exercise improves muscle strength
but not gait speed [76]. Overall, the available data sug-
gest that regular exercise during adult life can reduce
the risk of PD modestly, and that exercise programs
improve symptoms in PD patients. What has not been
determined is if and how exercise affects PD-related
pathogenic processes in the human brain. Interestingly,
however, electrical stimulation of the subthalamic
nucleus, a treatment that is effective in ameliorating
symptoms in many PD patients, can improve peripheral
glucose metabolism suggesting a link between neu-

ral network dysfunction and the metabolic state in PD
[77].

Studies of the effects of exercise and energy
intake in animal models of PD have elucidated
possible mechanisms whereby intermittent ener-
getic challenges may protect against PD (Fig. 1).
Exposure of mice to MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) results in degeneration of
substantia nigra dopaminergic neurons, depletion of
dopamine in the striatum and impaired corticospinal
plasticity. Exercise protects dopaminergic neurons
against MPTP toxicity in mice [78]. When tread-
mill running was initiated 5 d after MPTP lesioning
and continued for 1 month, it resulted in improved
balance on an accelerating rotarod compared to MPTP-
treated mice that did not exercise [79]. Analysis of
dopamine release using cyclic voltammetry showed
greater stimulus-evoked release and less decay of
dopamine in the dorsal striatum of exercised compared
to non-exercised MPTP-treated mice. Daily 30-minute
periods of wheel running exercise, 4–5 days/week
attenuated MPTP-induced akinesia and hypokinesia,
elevated BDNF levels in the parietal cortex and
restored motor activity completely in L-Dopa-treated
mice [80]. Exercise initiated after MPTP treatment
restored Ca2+-impermeable AMPA receptor expres-
sion and corticostriatal plasticity [81]. In a mouse
model of PD in which degeneration of dopaminergic
neurons occurs over a protracted time period, 18 weeks
of treadmill exercise reduced loss of dopaminergic
neurons improved balance and coordination compared
to non-exercised PD mice [82]. In the latter study, exer-
cise elevated levels of BDNF and glial cell line-derived
neurotrophic factor (GDNF) in the substantia nigra and
striatum, which are two growth factors known to pro-
mote the survival of dopaminergic neurons. A critical
role for BDNF in the anti-PD effect of exercise is sup-
ported by a study showing that exercise does not protect
against MPTP neurotoxicity in BDNF heterozygous
knockout mice [83]. Vigorous treadmill exercise also
induced the expression of the dopamine D2 receptor in
striatal neurons in MPTP-treated mice, suggesting that
one mechanism of the therapeutic benefit of exercise
in PD is to increase the sensitivity of striatal neurons to
dopamine [84]. In addition, 4 weeks of treadmill exer-
cise resulted in increased cerebral microvessel density
in the striatum in MPTP-treated mice, suggesting a
potential role for angiogenesis in the beneficial effects
of exercise [85].

There is evidence that individuals with a high calo-
rie intake are at increased risk of PD [86]. However,
population-based studies have not revealed any clear
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Fig. 1. Signaling pathways and molecular mechanisms that can improve neuronal bioenergetics and resistance to degeneration in PD. The
glucose transporter protein GLUT3 moves glucose into neurons where it is used as the major substrate for ATP production in mitochondria.
Neurons are highly excitable cells and so experience membrane depolarization (Na+ influx) and Ca2+ influx. A large amount of ATP is
used by ion-motive ATPases to remove Na+ and Ca2+ and thereby restore membrane potential to terminate Ca2+ signaling. Exercise, energy
restriction and cognitive stimulation can engage several signaling pathways in neurons including activation of glutamatergic synapses resulting
in Ca2+ influx through plasma membrane glutamate receptor channels, and production and release of brain-derived neurotrophic factor (BDNF)
which activates its high-affinity receptor TrkB. Ca2+ influx can activate calcium/calmodulin-dependent protein kinase (CaMK) which, in turn,
activates the transcription factor cyclic AMP response element-binding protein (CREB). CREB induces the expression of several genes that
encode proteins involved in neuronal plasticity and stress resistance including BDNF, the DNA repair enzyme APE-1, and PGC-1� which is
a transcription factor that induces mitochondrial biogenesis. Ca2+ influx can also activate the transcription factor NF-κB which induces the
expression of BDNF, the anti-apoptotic protein Bcl-2, and the mitochondrial antioxidant enzyme SOD2. Exercise and energy restriction may also
increase the sensitivity of neurons to insulin and insulin-like growth factor 1 (IGF-1) which activate receptor tyrosine kinases (RTK) coupled to
phosphatidylinositol-3 kinase, Akt kinase and extracellular signal-regulated kinases (ERKs). Two downstream transcription factors that mediate
responses to BDNF and insulin/IGF-1 are CREB and PGC-1�. Glucagon-like peptide 1 (GLP-1) activates receptors coupled to the GTP-binding
protein Gs, which activates adenylate cyclase (AC) resulting in the production of cyclic AMP (cAMP) and protein kinase A (PKA), and PKA
then activates CREB. Finally, reactive oxygen species (ROS) generated during mitochondrial respiration can activate the transcription factors
Nrf-2 and heat shock factor 1 (HSF-1). The latter transcription factors induce the expression of genes encoding antioxidant enzymes such as
NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase 1 (HO-1), and protein chaperones such as heat-shock protein 70 (HSP70).

association between obesity or diabetes and the risk
of PD [87]. Nevertheless, dietary energy restriction is
highly effective in protecting dopaminergic neurons
and improving functional outcome in mouse and mon-
key models of PD. Mice maintained on an alternate

day fasting diet exhibited reduced damage to dopamin-
ergic neurons and less motor deficits in the MPTP
PD model [88]. Once daily treatment of mice with
2-deoxyglucose, a nonmetabolizable glucose analog
that induces cellular energetic stress similar to fast-
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ing, also protects neurons against MPTP which was
associated with reduced oxidative stress, improved
mitochondrial function and up-regulation of expres-
sion of the protein chaperone HSP-70 in neurons [88].
In a study of rhesus monkeys, one group was main-
tained on the usual diet and the calorie intake of
another group was reduced by 30%. After 6 months
all monkeys received a single injection of MPTP into
the right carotid artery and motor function, and levels
of dopamine and neurotrophic factors were measured
3 months later. Monkeys in the calorie restriction
group exhibited less motor deficits and higher levels
of dopamine, BDNF and GDNF in their striatum [89].
Dietary restriction did not prevent the degeneration
of dopaminergic neurons in the 6-hydroxydopamine
model of PD [90], although only one high dose of
6-hydroxydopamine was used leaving open the pos-
sibility that energy restriction would protect against
a lower level of exposure to this neurotoxin. Indeed,
caloric restriction did protect dopaminergic neurons
against 6-hydroxydopamine-induced degeneration in
a C. elegans model by a mechanism mediated by the
deacetylase Sir-2.1 [91].

Rare cases of PD result from mutations in, or over-
expression of, �-synuclein [5, 6]. Mice expressing
the PD-causing human �-synuclein A53T mutation
exhibit progressive motor impairment and some patho-
logical changes including accumulation of �-synuclein
aggregates similar to PD patients [92]. While most
of the focus in PD research has been on nigros-
triatal dopaminergic neurons, brainstem autonomic
(dorsal motor nucleus of the vagus) and monoamin-
ergic neurons are often affected very early in the
disease, even prior to the development of motor symp-
toms [93, 94]. Similar to PD patients, �-synuclein
mutant mice exhibit impaired brainstem autonomic
function characterized by reduced parasympathetic
control of heart rate [22]. The latter study showed
that intermittent fasting ameliorates, whereas a high
fat diet exacerbates, the brainstem cholinergic deficit.
A high fat diet also increased the vulnerability of
dopaminergic neurons to MPTP in mice [95]. Inter-
estingly, A53T �-synuclein mice exhibit abnormalities
in energy metabolism characterized by reduced body
weight gain when maintained on a high calorie diet,
reduced accumulation of body fat, hypoleptinemia and
increased energy expenditure [96]. The latter phe-
notypes have been noted in previous studies of PD
patients [97], suggesting that �-synuclein pathology
may drive peripheral metabolic alterations.

While the results of studies of animal models pro-
vide compelling evidence that exercise and energy

restriction, particularly intermittent fasting, can pro-
tect neurons against pathogenic processes relevant to
PD, rigorous studies in human subjects are lacking.
Thus far, exercise studies have been relatively short
term (typically 1 – 2 months) and have evaluated only
motor function, with no measurements of dopaminer-
gic neuron function or biomarkers. There have been
no interventional trials of intermittent fasting in PD
patients.

DIETARY SUPPLEMENTS AND DRUGS

It is clear from studies of patients, disease-causing
mutations and experimental models that vulnerable
neurons in PD suffer a deficit of cellular energy which
manifests in reduced levels of adenosine triphosphate
(ATP) and nicotinamide adenine dinucleotide (NAD+)
[98]. One approach for protecting neurons in PD is
to enhance the ability of neurons to maintain high
levels of ATP and NAD+. Creatine, which is widely
used as a dietary supplement by athletes [99] plays an
important role in maintaining ATP levels in cells with
a high metabolic demand, most notably muscle cells
and neurons [100]. Creatine is synthesized from argi-
nine and glycine, primarily in the liver and kidney, and
is released into the blood and taken up by neurons.
When administered prior to exposure to MPTP, crea-
tine treatment can protect dopaminergic neurons and
reduce motor deficits in mice [101, 102]. Creatine can
also protect the brain against traumatic injury [103],
a risk factor for PD [104]. Clinical trials of creatine
in PD patients have not demonstrated major ame-
liorative effects on motor symptoms, although other
benefits have been noted including improved mood
and a reduced need for escalation of levodopa dose
[105].

Nicotinamide is a dietary supplement that can
bolster cellular NAD+ levels and can protect neu-
rons against metabolic and excitotoxic insults [106].
Nicotinamide can also reduce the accumulation of,
and protect neurons against, the neurotoxic amy-
loid �-peptide by a mechanism involving enhanced
autophagy [107]. In mouse models of PD administra-
tion of nicotinamide prior to exposure to MPTP results
in preservation of substantia nigra dopaminergic neu-
rons and maintenance of striatal dopamine levels [108].
In an open-label study of 800 PD patients treated
with nicotinamide adenine dinucleotide (which can
increase cellular NAD+ levels in animals) improve-
ment in symptoms was noted in 80% of the patients
[109]. However, large double-blind placebo-controlled
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trials of nicotinamide or NADH would be required to
establish efficacy of this treatment approach.

The neuroprotective effects of ketogenic diets [110]
and intermittent fasting which also elevate ketone
levels [111], suggests a potential for ketogenic diets to
be beneficial in preventing and/or treating PD. In one
study a ketogenic diet protected dopaminergic neurons
against 6-hydroxydopamine toxicity [112], while in
another study administration of D-�-hydroxybutyrate
(the major endogenously produced ketone body) to
mice reduced neuronal degeneration and ameliorated
motor deficits in the MPTP model [113]. Studies of
ketogenic diets in PD patients remain to be performed.

Because exercise and dietary energy restriction
improve insulin sensitivity and are neuroprotective
[41, 114], it is reasonable to consider that drugs that
increase insulin sensitivity might be beneficial for PD
patients. A widely used drug for diabetes is met-
formin, which can increase the sensitivity of cells
to insulin by increasing activity of AMP-activated
protein kinase (AMPK) [115]. A study of 800,000 Tai-
wanese subjects indicated that diabetes patients treated
with metformin have a reduced risk of PD compared
to those not treated with metformin [116]. Another
drug that increases insulin sensitivity is pioglitazone,
which does so by activating the peroxisome prolifera-
tor activated receptor-� (PPAR-�) [117]. Pioglitazone
has demonstrated efficacy in reducing dopaminer-
gic neuron degeneration and neuroinflammation, and
improving functional outcome in the mouse MPTP
and rat 6-hydroxydopamine PD models [118–123]. In
a recent study, monkeys were subjected to unilateral
intracarotid artery MPTP administration, their motor
function was measured 24 hours later, and they were
then assigned to pioglitazone (5 mg/kg once daily) or
placebo groups. Three months later there was a signifi-
cant improvement in motor function in the pioglitazone
group compared to placebo [124]. When the authors
examined the brains of the monkeys they found sig-
nificantly greater levels of tyrosine hydroxylase in the
striatum, less loss of nigral dopaminergic neurons and
less neuroinflammation [124]. Whether such drugs will
be evaluated in large-scale trials in PD patients remains
to be determined.

When one eats a meal, the nutrients (particularly glu-
cose) stimulate intestinal epithelial cells to release the
30 amino acid peptide GLP-1 (glucagon-like peptide
1) into the blood. GLP-1 exerts actions on pancreatic
�-cells, and muscle and liver cells that enhance glucose
removal from the blood. It increases the production by
and release from �-cells, and it increases the insulin
sensitivity of muscle and liver cells [125]. The half-

life of GLP-1 in the blood is very short (1–2 minutes)
because it cleaved and thereby inactivated by a cir-
culating protease called DPP-IV. However, GLP-1
peptide analogs have been generated that are resis-
tant to DPP-IV while retaining full GLP-1 receptor
agonist activity. Two such GLP-1 analogs, Exendin-
4/Exenatide and liraglutide, were developed for the
treatment of type 2 diabetes and have proven to be
highly effective for that indication [126]. By improv-
ing whole body glucose metabolism GLP-1 analogs
might be expected to benefit the brain. As it hap-
pens, however, GLP-1 receptors are widely expressed
in neurons where their activation can be directly
neuroprotective. For example, treatment of cultured
hippocampal neurons with GLP-1 or Exendin-4 pro-
tects them against excitotoxicity, and treatment of rats
with GLP-1 or exendin-4 protected forebrain choliner-
gic neurons against excitotoxin-induced death [127].
GLP-1 receptor agonists also protected cultured hip-
pocampal neurons from being damaged and killed by
amyloid �-peptide [128] and lessened neuropatholo-
gies in transgenic mouse models of AD [129–131].
Treatment of huntingtin mutant mice (a model of
HD) with Exendin-4 improved glucose regulation
and ameliorated neuropathological changes and motor
dysfunction by a mechanism involving suppression
of accumulation of huntingtin protein aggregates in
pancreatic �-cells and striatal and cortical neurons
[132]. Thus, GLP-1 receptor agonists are broadly neu-
roprotective in a range of experimental models of
neurodegeneration.

GLP-1 receptors are coupled to the GTP-binding
protein Gs and hence signal via a cyclic AMP-mediated
pathway (Fig. 1). In neurons, activation of GLP-1
receptors results the activation of the transcription
factor cyclic AMP response element binding protein
(CREB) [133]. Because CREB is known to play impor-
tant roles in synaptic plasticity and cell survival [134],
it is likely that CREB mediates effects of GLP-1 recep-
tor agonists on neuroplasticity and neuroprotection
[135]. Indeed, CREB induces the expression of BDNF
which is known to play key roles in neuroplastic-
ity, and can protect many types of neurons, including
dopaminergic neurons, against insults relevant to PD
[136, 137]. Dopaminergic neurons express GLP-1
receptors and treatment of cultured dopaminergic neu-
rons with GLP-1 or the long-acting GLP-1 analog
Exendin-4 protects those neurons from being damaged
by 6-hydroxydopamine [138]. Moroever, treatment
of mice with Exendin-4 reduces neuronal degenera-
tion and improves functional outcome in the MPTP
model of PD [138]. Recently, an initial single-blind
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trial of Exendin-4 in PD patients was completed [114].
The PD patients were randomly assigned to Exendin-
4 treatment or control groups and were treated for
12 months and their symptoms were evaluated after
overnight withdrawal of dopaminergic drugs at base-
line, 6 months and 12 months. Whereas the symptoms
of patients in the Exendin-4 group improved during
the trial, the symptoms of those in the control group
worsened. Collectively, the data from animal studies
and the results of the initial clinical trial suggest that
GLP-1 agonists hold potential as disease-modifying
treatments for PD.

CONCLUSIONS

The findings described in this article suggest that
interventions that improve peripheral and brain bioen-
ergetics are beneficial for neurons vulnerable in PD
including not only dopaminergic neurons, but also
brainstem and cortical neuronal populations that are
often affected in PD patients. It is becoming clear that
regular exercise and moderation in energy intake (par-
ticularly intermittent fasting) promote optimal brain
function and can reduce the risk of age-related brain
disorders, including stroke, AD and PD [41]. Because
of advances in the early diagnosis and effective treat-
ment of cancers and cardiovascular disease, many more
individuals are living beyond 70 years of age, the ‘dan-
ger zone’ for PD. Importantly, an overall worsening of
healthy diets and lifestyles is sweeping the globe result-
ing in rapid increases in the incidence of obesity and
diabetes. Because obesity and diabetes are risk factors
for age-related cognitive deficits, and possibly PD, it
is likely that the number of individuals with PD will
continue to increase. Unfortunately, the general knowl-
edge that sedentary gluttonous lifestyles increase the
risks for cardiovascular disease, diabetes and prema-
ture death has not been sufficient motivation for the
majority of people. Perhaps the prospects of devel-
oping AD and PD will be sufficient motivation for
some individuals to adopt lifestyles that include regular
exercise and intermittent energy restriction. Physicians
should prescribe diet and exercise prescriptions that are
doable, and follow-up vigorously to increase the odds
of compliance using modern communication methods
such as text messaging and social media [41]. Energy
metabolism-modifying drugs that may counteract the
neurodegenerative process in PD are being developed
in preclinical studies and, in some cases, are being eval-
uated in clinical trials in PD patients. Among these,
GLP-1 receptor agonists are particularly promising

because they dramatically improve peripheral insulin
sensitivity on the one hand, and act directly on neurons
to enhance BDNF production and increase resistance
to oxidative and metabolic stress.
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