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Abstract. Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromus-
cular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging
(i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore
muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is
to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the
mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive
analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy
in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy
(prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy
perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of
regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those
ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the
pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
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FoxO3 Forkhead box class O

GAA Acid a-glucosidase

GSDII(b) Glycogen storage disease type II(b)

Hsp Heat shock protein

IBMPFD Inclusion body myopathy associated
with Paget’s disease of the bone
and frontotemporal dementia

LPD Low protein diet

3-MA 3-methyladenine

MAPILC3  Microtubule-associated
protein light chain 3

MDCIA Congenital muscular dystrophy
Type 1

MiT/TFE microphthalmia/transcription
factor E

MFM Myofibrillar myopathies

mTORC1 mammalian Target of
Rapamycin Complex1

OPMD Oculopharyngeal Muscular
Dystrophy

PE Phosphatidylethanolamine

PI3P Phosphatidylinositol-3-phosphate

RV Rimmed vacuole

sIBM sporadic Inclusion Body Myositis

SQSTM1 (p62) Sequestosomel

UCMD Ullrich congenital
muscular dystrophy

UPR Unfolding protein response

UPS Ubiquitin-proteasome system

VCP Valosin containing protein

Vps34 Vacuolar sorting protein 34

XMEA X-linked myopathy with
excessive autophagy

XLMTM X-linked myotubular myopathies

INTRODUCTION

Muscle tissue accounts for approximately 40%
of whole body mass. It displays an incredible
plasticity, enabling it to adjust its size based on
external stimuli. Numerous pathological conditions
can threaten its maintenance and cause muscle
dysfunction. Muscle mass relies heavily on the bal-
ance between catabolic and anabolic processes, and
more specifically on the equilibrium between protein
synthesis and degradation (i.e. proteostasis). While
promoting protein synthesis increases muscle mass,
blocking protein degradation is rather detrimental.
Importantly, due to the central metabolic impor-
tance of muscle tissue, changes in muscle mass and
defects in skeletal muscle proteostasis often affect

global body metabolism [1, 2]. Although these inte-
grated perturbations may significantly impact the
general health of patients suffering from neuromus-
cular disorders, this phenomenon has been only
poorly explored. By contrast, the literature reporting
pathogenic defects in protein degradation in mus-
cle diseases has grown exponentially over the last
decade. There are two major contributors to pro-
tein degradation in cells: The ubiquitin-proteasome
system (UPS) and the autophagy-lysosome process.
While involving different machineries and potentially
targeting distinct proteins, the two systems are tightly
connected and dysfunction of one impinges on the
other [3]. Altered activity of the UPS contributes
to muscle atrophy in neuromuscular disorders, such
as MDCI1A (congenital muscular dystrophy type
1) [4] and DMD (Duchenne muscular dystrophy)
[5, 6]. Signs of impaired UPS include accumu-
lation of misfolded and/or ubiquitinated proteins
[7]. In parallel, autophagy coupled with the endo-
cytic/lysosomal compartments permits recycling of
proteins and organelles under basal conditions
(referred to as constitutive autophagy) and upon dif-
ferent cellular stresses (adaptive, induced autophagy)
[8]. Autophagy is essential for cell homeostasis as
highlighted by the tissue alterations arising from
its dysregulation. The role of autophagy impair-
ment in the pathogenesis of neurodegenerative
diseases [9, 10], cancers [11] or infectious dis-
eases [12], as well as in age-associated homeostasis
decline [13, 14] is now clearly documented. Most
neuromuscular disorders have been linked to insuf-
ficient autophagy-mediated degradation, although
some, such as MDC1A, have been shown to have
enhanced autophagic flux. Based on these obser-
vations, autophagy has often been considered as a
promising target for therapeutic strategies. In this
review, the mechanisms at play in autophagy and the
signalling involved in its regulation will be briefly
presented; for further details, the reader is referred
to reviews regarding specific autophagy-associated
molecular mechanisms [15-18]. In the following
sections, the pathological significance of autophagy
perturbation in neuromuscular disorders will be dis-
cussed.

AUTOPHAGY AT A GLANCE

Autophagy is an evolutionary conserved home-
ostatic process, associated with unfavourable and
conditions of stress (Fig. 1) [19]. Constitutive
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autophagy ensures basal turnover of proteins and
organelles and is a key element of the quality con-
trol program in cells [20]. Induced autophagy is
triggered by various stimuli, such as nutrient depri-
vation, energy depletion or growth factor withdrawal,
as well as oxidative or endoplasmic reticulum (ER)
stress. Autophagy is coupled to lysosomes, constitut-
ing the end point of the degradative process. There
are three different types of autophagy: Macroau-
tophagy, microautophagy, and chaperone-mediated
autophagy (CMA), which each differ by their mech-
anism of cargo delivery to the lysosomes [21, 22]
(Fig. 1). Microautophagy involves direct invagi-
nation of a small cytosolic portion by lysosomes
and may contribute to glycogen loading in these
organelles. CMA relies on the selective translocation
of soluble, unfolded proteins into lysosomes, after
multimerization of the lysosomal membrane receptor
LAMP2A [23, 24]. The KFERQ motif of the target
proteins is recognized by chaperones (e.g. Hsc70)
and co-chaperones [25]. Macroautophagy, also sim-
ply referred to as autophagy, proceeds through
the formation of double membrane vesicles, called
autophagosomes. They engulf large cytoplasmic por-
tions and organelles, which are degraded after fusion
with lysosomes [20, 21]. Autophagosome formation
involves more than 30 Atg (autophagy-related gene)
proteins (Fig. 1).

Autophagy induction

Nutrient sensing in cells is controlled by the large
multiprotein complex mTORCI1 (mammalian Tar-
get of Rapamycin Complex 1), which includes, as
major constituents, mMTOR and raptor. Amino acid-
dependent activation of mTORC1 by the GTPase
Rheb occurs at the lysosomal surface and is tightly
controlled by Rag GTPases and the Ragulator com-
plex [26-28]. Rheb is inhibited by the TSC1/TSC2
complex, which integrates energetic and growth fac-
tor signals through its phosphorylation by AMPK
and Akt/PKB, respectively [29] (Fig. 2). In most
cell types, autophagy induction is determined by
mTORCI inhibition, as seen upon treatment with
rapamycin, a pharmacologic mTORCI inhibitor [30].
mTORCI1 inhibits autophagy by phosphorylating
Ulk1 (Ser 757) and Atgl3, in the Ulkl-Atgl3-Fip
200-Atgl01 complex [31, 32]. mTORCI1 activity
disrupts the interaction of Ulkl and AMPK [33,
34]. Upon energy deprivation, this interaction is
restored, leading to Ulk1 phosphorylation at Ser317
and Ser777 and thereby to autophagy induction

[34-38] (Fig. 1). Ulkl stabilization further depends
on its ubiquitination by the E3 ubiquitin ligase Traf6.
Inhibitory phosphorylation of Ambral, a positive
kinase for Traf6, by mTORC1 limits Ulkl activa-
tion [39] (Fig. 1). ER stress, reactive oxygen species
(ROS) and hypoxia induce autophagy by modulat-
ing mTORCI1 and AMPK signalling, although their
effect also depends on PERK/elF2a, IRE1/JNK, and
HIF1/Bnip3 pathways [40].

Autophagy initiation

Activation of the Ulkl-Atgl3-Fip200-Atgl01
complex triggers assembly of the nucleation machin-
ery at multiple sites, initiating de novo vesicle
formation. Membranes to build the initial autophagy
compartment (also called phagophore) are provided
by ER, Golgi, mitochondria, and plasma mem-
brane [41-46]. Nucleation requires production of
phosphatidylinositol-3-phosphate (PI3P), which is
reliant on the class III PI3 kinase, Vps34 (Vacuolar
Sorting Protein), complexed with Vpsl15-Beclinl-
Atgl4L proteins [47, 48]. Activation of Vps34
complex is mediated by AMPK and UlkI, through
phosphorylation of Beclinl and/or Ambral, which
binds to Bcl2 and prevents it from sequestering
Beclinl [49-53] (Fig. 1). PI3P formation permits the
recruitment of Atg complexes at the phagophore [54].

Autophagosome maturation

Expansion and closure of autophagic vesicles
involve transient attachment of the ubiquitin-like con-
jugation complex Atgl2-Atg5 at the phagophore,
following Atgl2 activation by Atg7 (El activating
enzyme) and its transfer to AtglO (E2 conjugating
enzyme) (Fig. 1). Interaction of Atgl2-Atg5 com-
plex with Atgl6L facilitates the conjugation of LC3
(MAPILC3 for microtubule-associated protein 1
light chain 3) to the lipid phosphatidylethanolamine
(PE), after its activation by Atg7 and its transfer to
Atg3 (E2 like enzyme) [54, 55]. LC3-PE (or LC3II)
is inserted into autophagosome membranes and con-
trols vesicle expansion and size [56]. Fusion between
the lysosome and autophagosome, resulting in for-
mation of the autolysosome, requires LAMP2 and
Rab7 proteins and marks the final step of vesicle
maturation. It correlates with autophagic vesicle acid-
ification conferred by the lysosomal environment [57]
(Fig. 1). Notably, both autophagosome maturation
and lysosome biogenesis involve a tight interac-
tion with the endocytic system, highly dynamic
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membrane remodelling and microtubule-dependent
vesicle and cargo movements [58—60]. In particular,
endosomes can fuse with autophagosomes to form
amphisomes before fusing with lysosomes, which
would facilitate aggregate removal [61]. Lastly, lyso-
some recycling from the autolysosome is essential
to maintain autophagy and may depend on mTOR
activity [62].

Cargo recognition and delivery

It was recently recognized that autophagy can
proceed via selective degradation of cargoes.
Clearance of specific substrates, including damaged
organelles or ubiquitinated proteins, is mediated by
receptors, such as p62/SQSTMI1 or Nbrl, which
recognize and bind to unfolded protein regions or
poly/mono-ubiquitin chains of the cargoes and allow
their translocation to the autophagy machinery by
interacting with LC3/Gabarap proteins [63-65]
(Fig. 1). Notably, chaperones of the heat shock
protein family (Hsp70 and HspB8) and the BAG3
co-chaperone coordinate selective degradation of
ubiquitinated substrates upon autophagosome for-
mation through a process called chaperone-assisted
selective autophagy (CASA) [66, 67]. Moreover,
p62, BAG3 and also HDAC6 participate in aggregate
clearance by targeting misfolded proteins, which are
clustered in inclusion bodies and large aggresomes,
to autophagosomes (so called aggrephagy) [68—72]
(Fig. 1).

Degradation steps

Lysosomal hydrolases, including cathepsin D and
L, ensure degradation of the autolysosomal content
and of the substrates of microautophagy and CMA.
The resulting products (i.e. amino acids, free fatty
acids and glucose) are released into the cytosol to
be reused for energy production or in biosynthesis
pathways (e.g. protein synthesis).

BALANCED AUTOPHAGY IS REQUIRED
FOR MUSCLE HOMEOSTASIS

How to monitor autophagy in skeletal muscle

To best identify autophagy perturbation and deter-
mine its role in muscle disorders, one would need to
combine in vitro analyses in human muscle cells, in
vivo procedures in animal models of the pathology,
as well as evaluation of autophagy markers in muscle

biopsies from patients. However, the latter is often
difficult as sampling site and nutritive status of the
patients at the time of biopsy are usually not defined.
Further, heterogeneity in the results may arise from
variability in the disease stages and quality of the
muscle biopsy.

Quantification of LC3 and p62 protein levels con-
stitutes the initial experiment when investigating
autophagy. The amount of LC3II mirrors autophago-
some accumulation in cells. Normalization of LC3II
levels to the expression of housekeeping proteins is
preferred over determination of LC3II/LC3I ratio,
as the latter may be biased by LC3 transcriptional
changes [16, 73]. Similarly, p62 accumulation is often
considered as a relevant sign for autophagy impair-
ment, but it may also be caused by transcriptional
changes in the absence of autophagy blockade [74,
75]. Hence, transcript quantification of autophagy
genes, including Sgstmi/p62 and MaplLc3 (Lc3)
needs to complement protein evaluation, but is not
sufficient per se to assess the autophagic flux. Indeed,
autophagy can be blocked at the induction or degra-
dation steps, irrespective of any changes in gene
expression [76]. Autophagosome accumulation can
also be evaluated by quantifying the number of LC3-
positive vesicles, an experiment that may require the
use of GFP-LC3 transgenics or transfection [77].

A major drawback, often not considered in
autophagy studies, is that LC3II levels or the
autophagosome number are not sufficient to judge
whether the autophagic flux is increased or blocked.
Actually, accumulation of autophagic vesicles in
muscle cells is more frequently associated with
impaired autophagic flux than with increased
autophagy induction. To characterize the flux, one
needs to monitor the changes in autophagosome
number or LC3II levels when lysosomal degra-
dation is blocked. Such procedures should also
allow discrimination between alterations in induc-
tion vs. degradation steps. While chloroquine and
bafilomycin (both inhibitors of lysosomal acidifi-
cation) have shown efficacy in vitro, colchicine,
a microtubule depolarizing drug, is preferred for
the targeting of muscle in mouse models [78, 79].
Complementary studies include electron microscopy
(EM), which may clarify the nature of autophagic
vacuoles. When possible, confocal microscopy
monitoring - in cells or muscle - using the
RFP/mCherry-GFP-LC3 reporter allows distinction
between neutral, non-degradative vesicles (RFPT,
GFP™) from acidic, functional autolysosomes (RFP™
only) [73]. Lastly, autophagy-mediated proteolysis
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can be evaluated in cells and mice by measuring the
degradation rate of labelled proteins in the presence
of an autophagy and/or an UPS inhibitor [77, 80].

Of note, upon treatment of cell lines, mouse models
or patients with candidate drugs that affect autophagy,
evaluation of the effect of the treatment on autophagic
flux is required in addition to the monitoring of phe-
notypic changes. In clinical trials, the nutritive status
of patients should be clearly defined and ideally
standardised at the time points of investigation. Fur-
thermore, immunostaining and biochemical analyses
of autophagy and lysosome markers should be com-
bined to reduce the inherent limitations of sampling.
Autophagy may be analysed in other cell types, such
as melanocytes from patients, if those cells repro-
duce the autophagic perturbations observed in muscle
[81, 82].

Conditions increasing autophagic flux in muscle

Exercise has been shown to induce autophagy in
muscle and is thought to enable the tissue to dis-
pose of altered contractile proteins and/or to adapt
to increased energetic demand [83—87]. Neverthe-
less, the beneficial effect of autophagy induction
in muscle on global glucose and lipid metabolism
remains controversial [2, 83]. Similarly, fasting
triggers autophagy in muscle (particularly in fast-
twitch muscle) in response to nutrient or energy
depletion [88, 89]. In these conditions, increased
muscle breakdown not only ensures energetic main-
tenance in the tissue but also preserves global
body metabolism by supplying amino acids to non-
muscle tissues. Autophagy has also been implicated
in denervation-induced muscle atrophy [78, 90-93]
although mTORC]1-dependent autophagy inhibition
was suggested to limit muscle wasting upon nerve
injury [94]. Additionally, in humans, the muscle wast-
ing associated with sepsis [95, 96], cancer [97, 98],
disuse [99] or cirrhosis [100] has been related to
increased autophagic flux.

Impaired autophagic flux and atrophy

The development of mouse models deficient for
autophagy-related proteins in muscle has revealed
the deleterious effect of autophagy blockade on
this tissue. In muscle depleted of Atg7 or Atg5,
autophagy is blunted and mutant mice develop a pro-
gressive myopathy, characterised by muscle atrophy
and weakness. Further, the loss of mass upon fast-
ing and denervation is exacerbated in Atg7-deficient

mice compared to controls [101]. Autophagy impair-
ment causes fibre vacuolization and intracellular
accumulation of abnormal organelles, ubiquitinated
proteins and p62-positive aggregates. In addition,
increased oxidative and ER stresses were observed,
which were likely responsible for muscle degenera-
tion and dysfunction. Of note, Vps15 deficiency in
mouse muscle does not alter autophagy induction but
impinges on maturation steps and causes a severe
myopathy. Pathological features in these mice include
p62-positive aggregates and abnormal organelles, as
seen in Atg7-deficient muscle, but also necrosis,
inflammation, glycogen accumulation, autophago-
some build-up and vacuoles lined with sarcolemmal
proteins [102]. These alterations are reminiscent of
those described in toxic vacuolar myopathies in
humans, which can develop after long-term treatment
with drugs interfering with autophagy, such as chloro-
quine (anti-malarial agent) or colchicine (used to treat
gout) [103, 104]. Although recovery is obtained by
ceasing treatment, adverse effects may come from
the simultaneous administration of drugs promot-
ing autophagy induction, such as rapamycin, which
could dramatically aggravate muscle damage [105].
These pathological conditions are further evidence
that autophagy imbalance is detrimental for skeletal
muscle. Accordingly, a decline in autophagy capacity
may contribute to aging-related muscle alterations,
by reducing clearance of toxic organelles and prod-
ucts [106, 107]. Importantly, autophagy restriction
in satellite cells also causes quiescence loss with
age and thereby a decline in muscle regenerative
capacity [108]. Together with the aforementioned
data, these observations indicate that a fine-tuned
balance of autophagy is required for muscle
homeostasis.

Importance of mitophagy in muscle

Mitophagy refers to the selective degradation
of mitochondria by autophagy and is essential to
avoid accumulation of damaged mitochondria and
excessive ROS generation during oxidative phospho-
rylation [109] (Fig. 1). It involves specific receptors,
such as Bnip3, that are able to interact with depo-
larized mitochondria and the autophagic machinery
[110, 111]. The E3 ubiquitin ligase Parkin and the
kinase Pink1 also contribute to ubiquitin-dependent
mitochondrial breakdown [112-115]. Mitophagy is
induced in catabolic conditions and leads to remod-
elling of the mitochondria network, together with the
fusion and fission machineries [116]. Importantly,
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mitochondria fission is necessary and sufficient
for muscle atrophy induction [117]. Conversely,
accumulation of damaged mitochondria related to
impaired mitophagy is detrimental for muscle tis-
sue [118]. Hence, a tight regulation of mitophagy
is also essential for muscle homeostasis, and to
date, its pathogenic involvement in neuromus-
cular disorders probably remains underestimated
[119].

AUTOPHAGY REGULATION
IN SKELETAL MUSCLE

Transcriptional regulation of autophagy

In 2009, Mammucari et al. hypothesized that mus-
cle ability to maintain stress-induced autophagy for
a prolonged period requires autophagy gene up-
regulation. By using transcriptomic analyses, they
established that autophagy genes, such as Mapllc3,
Gabarapll, Bnip3 and Sgstml, are induced upon
fasting and denervation, and that their regulation is
driven by the FoxO3 (Forkhead box class O) tran-
scription factor [120]. FoxO1 up-regulates Cathepsin
Lexpression [121]. In mouse muscle, gene expression
was increased after as little as 12 hrs of starvation,
but remained unchanged from fed to basal con-
ditions when constitutive autophagy was induced
[76]. Interestingly, overexpression of Bnip3 or of
a constitutively active form of FoxO3 enhanced
autophagosome formation, whereas expression of a
dominant-negative form of FoxO3 or downregula-
tion of either FoxO3 or Bnip3 by shRNA reduced
autophagy induction upon fasting [120, 122]. FoxO3
phosphorylation by Akt/PKB, in response to growth
factors, inhibits its nuclear import, while, upon
energy deprivation, AMPK-mediated phosphoryla-
tion of FoxO3 activates its translocation [123-125].
In parallel, transcription factors of the MiT/TFE fam-
ily, including TFEB, promote expression of both
lysosomal (e.g. encoding V-ATPases, Cathepsin) and
autophagy (e.g. Maplic3, Sgstml, Atg9) genes [126,
127]. mTORCI1 regulates TFEB activity, and thus
autophagy gene transcription, by phosphorylating
TFEB and thereby modifying its nuclear transloca-
tion [128—130]. Lastly, epigenetic modulations likely
contribute to autophagy gene regulation. For exam-
ple, HDAC1/2 depletion in mouse muscle blunts
autophagy gene expression and causes a myopathy
in the surviving mutant mice. Whether this effect is
independent of FoxO remains to be determined [131].

Role of mTORCI in autophagy induction

In contrast to the well-established role of mMTORC1
in autophagy regulation in most cell types, autophagy
was suggested to be independent of mTORCI
in skeletal muscle [88, 132, 133]. In particular,
rapamycin treatment and shRNA directed against
Mrtor failed to promote autophagy induction in mus-
cle cells [120, 122, 133]. Further, acute Akt/PKB
activation blocked LC3 lipidation and autophagy
gene expression and caused severe muscle degenera-
tion characterized by p62 aggregates and myofibre
vacuolization [118, 120, 122]. Rapamycin did not
restore autophagy induction in those conditions,
suggesting that FoxOs were the determinant fac-
tors controlling autophagy. Nonetheless, TSCmKO
mice, specifically depleted for TSCI1 in muscle and
characterized by constant activation of mTORCI1
in the tissue, revealed new insights into the role
of mTORCI1 in autophagy control. Indeed, con-
stitutive and fasting-induced autophagy is blocked
in TSCmKO muscle and the mice show an age-
dependent accumulation of autophagic vacuoles
and debris [76]. Importantly, autophagy impair-
ment occurs despite simultaneous FoxO-dependent
up-regulation of autophagy genes and is medi-
ated by mTORC]1-dependent inhibition of Ulkl.
In control muscle, mTORCI1 inhibition correlates
with induction of constitutive autophagy (from
feeding to non-feeding time), while FoxO acti-
vation matches with starvation-induced autophagy.
Such distinction between constitutive and stress-
induced autophagy likely contributed to the initial
oversight of mTORCI1 involvement [134]. It is
now clear that autophagy involves a dual regula-
tion in muscle: While mTORCI activation locks
autophagy at the induction step, FoxOs may ensure
prolonged, enhanced flux via transcriptional regu-
lation of autophagy genes. Consistently, mTORCI1
inactivation in raptor-depleted muscle increases
autophagy induction, but concomitant FoxO inactiva-
tion seems to impinge on autophagosome processing
[76]. Tt is worth noting that Fyn/STAT signalling
was suggested to block the Vps34/Beclinl com-
plex and thereby autophagy, independently of
mTORCI1 [135]. However, mTORCI1 is activated
in Fyn-overexpressing transgenic muscle and likely
contributes to autophagy-related atrophy of gly-
colytic muscle, as observed in TSCmKO muscle
[135]. Autophagy regulation was also attributed
to mTORC2 (a second mTOR complex charac-
terized by its associated protein rictor) as rictor
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knock-down induced autophagy in an Akt/PKB- and
FoxO-dependent, but mTORCI1-independent man-
ner in muscle fibres [120]. However, perturbation
in autophagic flux was detected in mice defi-
cient for rictor in skeletal muscle, suggesting that
mTORC2 does not contribute to autophagy con-
trol in muscle [76]. Lastly, it should be noted that
differences exist between muscles regarding their
sensitivity to autophagy and the corresponding regu-
latory signalling [76, 118, 136].

NEUROMUSCULAR DISORDERS
RELATED TO ABNORMAL AUTOPHAGY
INDUCTION

In the last decade, growing evidence has pointed
to a converging role of autophagy perturbation in
muscle diseases. Suspicion of autophagic defects
was guided by characteristic histological features,
including vacuoles, protein inclusions and damaged
organelles in muscle fibres, although less specific
alterations, such as fibre degeneration, can also arise
from abnormal flux. In the following section we
will discuss the pathologies related to Akt/PKB,
mTORCI1 and/or FoxO dysregulation with poten-
tial increased autophagic flux or impaired autophagy
induction (Table 1).

Muscle pathologies with increased autophagic

Sflux

Congenital Muscular Dystrophy type [ - MDCI1A
is caused by mutations in the LAMA?2 gene, leading to
deficiency in the laminin-a2 chain, which assembles
with the B1 and y1 chains to form laminin-211 [137]
(Fig. 2). Utilising the severely affected, laminin-a2-
deficient, dy*X/dy3* mouse model, Carmignac et al.
(2011) suggested that muscle atrophy and degenera-
tion are related to increased autophagic flux, caused
by Akt/PKB inhibition in diseased muscle (Fig. 2).
Consistently, expression of the autophagy genes
was increased in dy>X/dy3X muscle. The authors
further showed that two successive injections of
3-methyladenine (3-MA), an inhibitor of Vps34,
were sufficient to ameliorate muscle morphology,
locomotion and lifespan of the mice [138]. However,
the efficacy of 3-MA to inhibit autophagy induc-
tion was not assessed in the study. In fact, others
reported that 3-MA may induce autophagy and inhibit
Akt/PKB by interfering with class I PI3 kinase activ-
ity [139, 140]. Moreover, questions remain as to how
laminin-211 deficiency leads to Akt/PKB dysregula-

tion, and as to how 3-MA administration normalizes
Akt/PKB activation and autophagy gene expression.

Myotonic Dystrophy type I — DMI1 is a mul-
tisystemic neuromuscular disorder, characterized -
amongst other symptoms - by pronounced muscle
atrophy. It is caused by a CTG repeat expansion
in the DMPK gene; the expanded RNA leads to
mis-splicing of numerous genes due to the nuclear
sequestration of splicing factors [141, 142] (Fig. 2).
Muscle wasting in DM1 was recently related to
enhanced autophagy, based on the accumulation
of LC3II and/or of autophagic vesicles in pri-
mary DM1 myoblasts [143—145], in muscle biopsies
from patients [146—149] and in flight muscles of a
DMI1 Drosophila model [145]. However, it is still
unclear whether these features arose from increased
autophagy induction or from a defect in the degra-
dation steps. Interestingly, altered expression of
the insulin receptor, which correlates with glu-
cose intolerance in DM1 patients [150-152], may
cause Akt/PKB-mTORCI dysregulation in diseased
muscle. Akt/PKB down-regulation and/or mTORCI1
inhibition were reported in muscle from Dmpk=/~
mice [152] and DM1 flies [145], as well as in DM1
human ES-derived neural stem cells [153]. In muscle
biopsies and myoblasts from DM1 patients, results
have not been consistent [144, 145, 154, 155]. Of
note, approaches aiming at inhibiting autophagic
flux tended to limit muscle atrophy in DM1 flies
[145]. However, these results need to be repro-
duced in DM1 mouse models and in human muscle
cells. Whether autophagy perturbation in DM1 only
depends on Akt/PKB changes or involves other
splicing-dependent and -independent events (such as
pS3 [143] or Tweak/Fnl4 [156]) still needs to be
addressed.

Muscle pathologies with impaired autophagy
induction

Collagen VI-related myopathies — COLVI-RM are
caused by mutations in genes encoding one of the
three collagen VI a chains, and range from a severe,
congenital form (Ullrich congenital muscular dystro-
phy - UCMD) to milder forms (Bethlem myopathy -
BM) [157]. In 2010, Grumati et al. established that
the autophagic flux is blocked at the induction step in
muscle of Col6al~/~ mice, which would contribute
to pathological accumulation of abnormal organelles
(e.g. dysfunctional mitochondria), increased fibre
apoptosis and eventually muscle degeneration [118].
The autophagy defect relied, at least in part, on the
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restricted, FoxO3-dependent expression of Beclinl
and correlated with an abnormal Akt/PKB acti-
vation (Fig. 2). Although Beclinl expression was
shown to be necessary and sufficient to restore
autophagy in mutant muscle, the role of Akt/PKB
dysregulation remains to be clarified. Indeed, while
prolonged starvation normalized Beclinl expression
and the autophagic flux, Akt/PKB activation was only
slightly changed in mutant muscle. As AMPK sig-
nalling was also altered in Col6al ~/~ muscle, further
investigations on the activation state and pathogenic
involvement of FoxO, mTORC1 and Ulk1l would be
of interest. Although similar reduction in Beclinl
protein levels has been reported in muscle biop-
sies from patients, analysis of the autophagic flux in
human muscle cells would provide a better insight
into the pathogenic role of autophagy. Interestingly,
autophagy induction also seems to be impaired in
COLVl-deficient zebrafish, but was not related to
abnormal Akt activation [158].

Importantly, forcing autophagy induction with pro-
longed starvation, long-term low protein diet (LPD),
or treatments with rapamycin, cyclosporin or sper-
midine ameliorated the phenotype of mutant muscle.
Improvements included normalization of muscle
ultrastructure, decreased apoptosis, increased muscle
strength and/or reduced muscle degeneration [118,
159]. By contrast, physical exercise failed to pro-
mote autophagic flux in mutant mice and led to major
aggravation of muscle pathology [87]. Notwithstand-
ing, a clinical trial in which 8§ BM and UCMD patients
were treated with LPD over 12 months has been
initiated in 2011 (Merlini et al., NCT01438788). A
preliminary report indicates that autophagy seems to
be re-induced based on the comparison of autophagy
markers in two patients before and after treatment
[160].

Duchenne muscular dystrophy — Mutations in the
gene encoding dystrophin, a cytoskeletal scaffolding
protein, cause Duchenne or Becker muscular dystro-
phies (DMD and BMD, for the severe and milder
forms, respectively) (Fig. 2). DMD is characterized
by severe muscle atrophy and weakness, caused by
progressive muscle degeneration, which is insuffi-
ciently compensated for by regeneration. Hence, with
time, muscle is progressively replaced by connective
tissue and fat [161]. Similar features are observed in
mdx and mdx/utrophin~/~ mouse models [162—164].
The presence of damaged organelles and protein
aggregates in DMD and mdx muscle suggest impaired
autophagic flux; vacuoles could also be detected in
muscles from BMD patients [165]. A detailed analy-

sis of the autophagic flux was conducted by De Palma
etal. [166] in mdx mice and later confirmed by others
[167-170]. In these studies, autophagy induction was
altered in adult mdx mice as indicated by increased
p62 levels and impaired LC3II formation in basal
and fasted conditions. These autophagy markers were
similarly affected in DMD biopsies [166]. One report
also suggested a potential defect in lysosomal biogen-
esis in mdx muscle, based on LAMP1 downregulation
[169].

Interestingly, as for COLVI-RM, autophagy block-
ade was related to Akt/PKB activation in mdx muscle,
in mouse primary muscle cells and in DMD mus-
cle biopsies [166, 167, 169, 171, 172]. Akt/PKB
dysregulation was detected prior to necrosis and
peaked during the necrotic and hypertrophic phases
[166]. Consecutively, mMTORCI hyperactivation and
restricted FoxO3-dependent autophagy gene expres-
sion could impair autophagy induction [166—168]
(Fig. 2). Whether phosphorylation of FoxO3 and
Ulkl was altered in mdx mice was not described.
There is evidence that imbalance in Akt/PKB-
mTORCI signalling in dystrophin-deficient muscle
relies on Nox2 (NADPH oxidase)-dependent oxida-
tive stress and activation of the associated Src
kinase. Consistently, Src or Nox2 inhibition nor-
malized Akt/PKB-mTORCI activation and restored
autophagosome formation and lysosome biogen-
esis [169]. It is important to note that other
authors reported that Akt/PKB-mTORCI activation
is unchanged in mdx mice [173, 174].

Increased Akt/PKB activation may constitute
an adaptive compensation to muscle damage in
young mice [175]; this would promote regenera-
tion, cause muscle hypertrophy and reduce myofibre
death. Accordingly, Akt/PKB-mTORCI] stimulation
improved muscle histology and/or function in mdx
mice [173, 176-181], which may, at least partly,
rely on the compensatory expression of cytoskeleton
molecules, such as utrophin [182, 183]. Conversely,
Akt/PKB-mTORCI1 hyperactivation in mdx muscle
may in fact be detrimental, and strategies that aim
to normalize the pathways, such as rapamycin treat-
ment, long-term LPD or Nox2 genetic inhibition, are
sufficient to restore autophagic flux and ameliorate
the dystrophic phenotype in mdx muscle [166, 169,
174, 184]. Similarly, AMPK activation in mdx muscle
may constitute an adaptive response to the energetic
stress associated with the opening of the mitochon-
drial permeability transition pore; reinforcing its
activation with the AMP analog, AICAR, improved
diaphragm muscle structure and force, likely by
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increasing mitochondria integrity and autophagic flux
[168]. Recently, treatment with the lipophilic statin,
simvastatin, also improved muscle pathology in adult
and old mdx mice, at least partly by re-inducing
autophagic flux, although its effect on Akt/PKB-
mTORCI1 and AMPK signalling was not tested [ 185].
In 2013, Hindi et al. reported a dual effect of Traf6,
depending on disease stage, in dystrophin-deficient
muscle. Increased Traf6 levels, detected early in mdx
muscle, may contribute to the massive inflammatory
response in the diseased muscle. Consistently, Traf6
depletion improved muscle function in young mdx
mice, likely by limiting tissue inflammation and pro-
moting its regeneration [170]. Conversely, with age,
Traf6 inhibition worsened muscle degeneration: This
deleterious effect was associated with autophagic
flux reduction, despite Akt/PKB-mTORCI1 inhibi-
tion in mdx:Traf6~/~ mice [170]. Traf6-dependent
autophagy induction would thus have a predominant,
protective effect during late stages of the disease by
promoting the clearance of by-products and damaged
organelles. Hence, therapeutic strategies targeting
autophagy in DMD muscle may be promising, espe-
cially during advanced stages of the disease. In
contrast, a proper balance would be required in earlier
phases to equilibrate muscle homeostasis, regenera-
tion, growth, and to limit tissue inflammation [186].

X-linked myotubular myopathies — Congenital
XLMTM are caused by mutations in the MTM I gene,
encoding myotubularin 1. They are characterized by
the predominance of centronucleated myofibres and
thus part of the centronuclear myopathies (CNM).
Pathological features observed in muscle biopsies
from patients and/or muscle from Mtml-deficient
mice and dogs include abnormal mitochondria, ubig-
uitinated proteins, p62-positive aggregates, glycogen
accumulation and/or autophagic vesicles [187-190].
While LC3 levels were increased in Mtm-null mouse
muscle, LC3II lipidation was impaired upon star-
vation of the mutant mice [187], suggesting that
autophagy induction is blocked. Akt/PKB-mTORC1
activation, which was detected in Mtm1-deficient
muscle as well as upon acute AAV-induced Mtml
depletion, may contribute to autophagy blockade in
the diseased muscle, as indicated by increased phos-
phorylation of Ulkl at Ser757 [187, 189, 191]. In
contrast to COLVI-RM, simultaneous FoxO3 acti-
vation was associated with increased expression of
autophagy genes (e.g. Mapllc3 or Sgstml), which
may participate in their accumulation in mutant
muscle [189]. Intriguingly, while treatment with an
mTORCI inhibitor restored autophagy and improved

the muscle phenotype in Mtm1-deficient mice, AAV-
mediated delivery of Mtml normalized autophagy
markers independently of the FoxO and mTORC1
pathways [187, 191]. Moreover, the pre-symptomatic
accumulation of autophagosomes in Mtm1-deficient
mouse muscle, in the absence of FoxO/mTORCI1
alteration, suggests that Mtm1 depletion may primar-
ily cause an abnormal induction of the autophagic
flux [189]. This hypothesis is consistent with the
role of Mtmrl4 (Myotubularin-related protein 14 -
Jumpy) to negatively regulate autophagy. The PI3P
phosphatase activity of Mtml and Mtmrl4 is sup-
posed to counteract the function of Vps34 at the
phagophore stage. Mtmri4 knock-down in C2C12
cells resulted in a loss of autophagy control and
increased proteolysis [192]. Since mutations in the
MTMRI14 gene were associated with CNM, one can
hypothesize that uncontrolled, excessive autophagic
flux may be part of the pathomechanisms leading
to myotubularin-related disease [193]. Notwithstand-
ing, Mtmrl4 deficiency in mice or zebrafish only
led to a slight perturbation of autophagy although
combined knock-down of m#ml and mtmri4 in
zebrafish caused a severe phenotype marked by
increased autophagic flux [194, 195]. Hence, the role
of myotubularins and their potential redundancy need
to be further analysed to better understand the conse-
quences of their deficiency in patients.
Laminopathies —Mutations in the LMNA gene,
encoding A-type lamins, are responsible for several
disorders (e.g. Emery-Dreifuss Muscular Dystrophy
or Limb-Girdle Muscular Dystrophy type IB) affect-
ing, among other tissues, skeletal muscle and heart
(Fig. 2). Growing evidence suggests that A-type
lamins have distinct functions besides their struc-
tural role in the nuclear lamina [196]. Autophagic
vacuoles described in muscle biopsies of patients
and in skeletal muscle of lamin A/C-deficient mice
first suggested that increased autophagy (i.e. nucle-
ophagy) may constitute an adaptive mechanism to
remove abnormal nuclei in diseased myofibres [197].
Alternatively, such vacuolar structures may arise
from impaired autophagy. As for COLVI-RM, DMD
and XLMTM, mTORCI1 activation was reported in
skeletal muscle and heart from lamin A/C-deficient
mice [198, 199]. While this correlates with Akt/PKB
hyperactivation in cardiac muscle of patients and
mutant mice, the status of Akt/PKB and FoxO sig-
nalling has not yet been analysed in the skeletal
muscle of Lmna-knock-in (KI) or knockout (KO)
mice. Similarly, although results obtained in dis-
eased heart indicate that autophagy induction is
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impaired [199], few data have been collected in
skeletal muscle. Levels of some autophagy mark-
ers (e.g. LC3 or Atg7) are increased, but only
Ulk1 inhibition, as shown by its elevated mTORC1-
dependent phosphorylation in muscle from mutant
mice, suggests that autophagy induction may be
hampered in skeletal muscle [198] (Fig. 2). Treat-
ment with rapamycin or temsirolimus, which both
inhibit mTORCI1, increased lifespan of lamin A/C-
deficient mice and improved heart function, likely
by restoring autophagic flux [198, 199]. Despite the
failure of dietary administration of rapamycin to
reduce mTORC1 in mutant skeletal muscle and con-
sequently to normalize autophagy, intriguingly, the
treatment reduced desmin accumulation in the tis-
sue and increased motor coordination (assessed by a
rotarod test) of the mice. Hence, whether autophagy
dysregulation contributes to pathogenic alterations of
the tissue remains to be investigated in more detail.

PATHOGENIC ROLE OF AUTOPHAGY IN
AUTOPHAGIC VACUOLAR MYOPATHIES

Muscle disorders discussed in the following sec-
tions belong to the group of AVM, characterized by
the accumulation of autophagic vacuoles in muscle
biopsies from patients. AVM include i) lysosomal
storage diseases (LSD; e.g. Danon disease), in which
vacuoles result from primary lysosomal dysfunction,
and ii) myopathies with rimmed vacuoles (RV; e.g.
IBMPFD), interpreted as autophagic vacuoles due
to their reactivity with lysosomal markers. Although
the mechanisms underlying their formation are not
known, RV may only secondarily arise from lyso-
somal defects, which may lead to autophagosome
proliferation and enlargement. An alternative, non-
exclusive hypothesis is that RV derives from defective
nuclear breakdown [200].

Muscle pathologies related to impaired
maturation of autophagic vesicles

Glycogen storage disease type IIb — GSDIIb (or
Danon disease) is an X-linked multisystemic disorder
characterized by severe hypertrophic cardiomyopa-
thy, normally alongside a mild myopathy with
predominant involvement of proximal muscle and
potential mental retardation [201]. Although domi-
nant mutations in LAMP2 were first shown to cause
the disease in 2000, there is still little data on the path-
omechanism underlying skeletal muscle alterations
[202]. LAMP2 is a transmembrane protein mainly

found in lysosomes and late endosomes, suggest-
ing that its deficiency may affect lysosome-related
processes, such as autophagy. Indeed, vacuoles con-
taining glycogen and autophagic debris, surrounding
acid phosphatase-positive basophilic granules recog-
nized as lysosomes, accumulate in muscle biopsies
from Danon patients [202]. Vacuoles display a
single membrane with sarcolemmal and extracellu-
lar matrix proteins, forming at their inner surface
a layer of basal lamina (so called AVSF for
autophagic vacuole with sarcolemmal features); their
occurrence increases with age but their formation
remains poorly understood (Fig. 3). It is notewor-
thy that such vacuoles are also found in cardiac
muscle from Danon patients, in muscle and non-
muscle tissues from LAMP2-deficient mice, and
in Lamp1/2-double KO embryonic cells [203-205].
LAMP2 depletion in hepatocytes and cardiomy-
ocytes delays autophagosome maturation, restricts
long-lived protein degradation and increases the
half-life of autophagic vesicles [203]. Accord-
ingly, LAMP2 and/or LAMPI seem to be required
for the efficient recruitment of Rab7 and the
fusion of (auto)phagosomes with lysosomes in
macrophages, hepatocytes, and mouse embryonic
fibroblasts (MEFs) [206, 207]. Nonetheless, the
proteolysis rate in Lampl/2-KO MEFs was unaf-
fected, suggesting that the role and importance
of LAMP?2 differ between cell types [204]. Fur-
ther, LAMP2 deficiency in hepatocytes altered
the recycling of the mannose-6-phosphate receptor
from endosomes to the trans-Golgi network, which
would cause mis-targeting and secretion of lysoso-
mal enzymes (e.g. Cathepsin D) [208]. It remains
unsolved whether autophagic vacuoles accumulate
in muscle fibres because of defective fusion with
lysosome or restricted lysosome degradative capac-
ity. Interestingly, overexpression of Vpsl15/Vps34
in Danon human myoblasts reduced glycogen and
LC3 accumulation, suggesting that compensation by
other functional proteins may constitute a thera-
peutic option [102]. Lastly, although the LAMP2B
splice isoform is predominantly expressed in skeletal
muscle, LAMP2A deficiency may impair the degra-
dation of specific cytosolic substrates targeted for
chaperone-mediated autophagy (CMA). No major
alteration of CMA was detected in LAMP1/2-
deficient MEFs [205] or neuronal cells [209].
Glycogen storage disease type II — As for Danon
disease, GSDII (or Pompe disease) is characterized
by glycogen accumulation in lysosomes of muscle
fibres. The defect arises from genetic deficiency in
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Fig. 3. Neuromuscular disorders related to defective autophagosome maturation or lysosomal dysfunction. In myopathies with rimmed
vacuoles (RV) (e.g. IBMPFD and MFM), autophagic vesicles would enlarge due to blockade of the maturation and fusion steps, likely
caused by the accumulation of protein aggregates. In IBMPFD, VCP deficiency may also directly alter autophagosome maturation. In
lysosomal storage disorders (LSD), defective autophagosome maturation/fusion and/or altered degradation steps lead to the formation of
autophagic vacuoles with sarcolemmal features (AVSF) or enlarged lysosomes; glycogen massively accumulates in these vesicles in GSDIIb
and GSDII diseases. Centronuclear myopathies related to DNM2 (AD-CNM) deficiency may also involve a defect in maturation/fusion
steps. Of note, lysosome biogenesis and autophagy induction seem to be perturbed in some of these diseases. Red lines represent inhibition;
green arrows show activation. Arrows in the H&E-stained muscle cross-sections indicate vacuoles. The pathogenic protein is indicated by

an asterisk. CryAB, a-crystallin B chain; Des, desmin; Flnc, filamin C; M6PR, mannose-6 phosphate receptor; Ub, ubiquitin; y, year. Scale
bar, 100 pm.
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acid a-glucosidase (GAA), the enzyme responsible
for glycogen hydrolysis. While earlier hypotheses
proposed that glycogen-filled lysosome enlarge-
ment and rupture led to muscle alterations, recent
observations suggest that autophagy impairment
may contribute to the loss of muscle homeosta-
sis in GSDII [210, 211]. Autophagic vacuoles and
debris, protein aggregates, as well as increased lev-
els of LC3II, p62 and ubiquitinated proteins have
been described in muscle biopsies from GAA-
deficient patients [74] and GAA-KO mice [212-214]
(Fig. 3). Confocal microscopy further confirmed
the presence of large areas of autophagic build-up
in the central region of muscle fibres of mutant
mice, suggesting inefficient autophagosome disposal
[215]. Elegant time-lapse analysis revealed defec-
tive autophagosome-lysosome fusion in GAA-KO
fibres, which could be responsible for the observed
defects [216] (Fig. 3). It remains to be answered
whether altered fusion and concomitant restriction
in lysosome biogenesis are caused by glycogen
accumulation, lysosome rupture or insufficient acid-
ification of endocytic/lysosomal vesicles [213, 217].
When glycogen accumulation was restricted by
knocking-down or depleting glycogen synthase in
GAA-deficient muscle, autophagic build-up was
reduced and muscle function improved [218, 219].
In light of the increased levels of autophagy-
related proteins, including LC3, Atg7 or Beclinl, in
GAA-deficient muscle, some authors suggested that
simultaneous enhanced autophagy induction, related
to GSK3[ activation, may aggravate autophagic
build-up [215, 220]. However, in the few experi-
ments that tested the autophagic flux using lysosomal
inhibitors, no major difference was detected between
control and mutant cells [74, 221]. Importantly,
numerous reports have established that resistance
of skeletal muscle to enzyme replacement therapy
(ERT) with recombinant human (rh) GAA is caused
by autophagic build-up, which restricts trafficking
and processing of hGAA [222]. ERT was shown to be
efficacious in heart tissue of severely affected patients
but did not reduce skeletal muscle alterations, specif-
ically because of its restricted effect on type II fibres
[211]. Confocal microscopy revealed that rhGAA
enzyme was trapped in autophagic vesicles in GAA-
KO single fibres, rather than efficiently translocated
into lysosomes as seen in control cells [223].
Attempts to modulate autophagy in order to
limit muscle alterations have led to divergent
results. TFEB or TFE3 overexpression in GSDII
myotubes and GAA-KO muscle was sufficient to

restore autophagosome-lysosome fusion, promote
exocytosis and clear mutant fibres from enlarged
lysosomes, glycogen and vacuoles [216, 224, 225].
Functional autophagy constituted a prerequisite
for TFEB-mediated lysosome exocytosis therapy
[216]. Similarly, PGCla overexpression cleared
autophagic build-up, likely by improving lysosome
biogenesis, but did not impact on glycogen accumu-
lation [226]. Moreover, rapamycin-treated primary
myotubes from patients displayed reduced vacuoliza-
tion [74], whereas addition of torinl/2, another
inhibitor of mTOR, failed to reduce lysosome
enlargement despite autophagy induction [216].
Conversely, genetic suppression of autophagy by
depleting Atg7 prevented glycogen accumulation and
autophagic build-up in GAA-KO mice, while Atg5
depletion in mutant mice [214] and Azg7 knock-down
in primary mouse myotubes [213] had no effect on
glycogen storage. Moreover, Atg7-GAA double KO
mice displayed no major change in their overall phe-
notype [220] and Atg5 loss even worsened the muscle
phenotype of GAA-KO mice. Combining ERT with
autophagy inhibition led to significant improvements
in glycogen removal and lysosomal function, which
were related to decreased autophagic build-up with
Atg7 depletion, but not Atg5 suppression [220]. How-
ever, there was no evidence for improvement of
muscle function. Hence, although the pathogenic role
of autophagy blockade is well established in GSDII,
whether strategies should target or limit its induc-
tion in combination with other therapeutic options
remains to be discussed and functionally analysed.
Vici syndrome — Vici syndrome is a rare disorder
including neurologic, ocular, cardiac and muscular
symptoms; mutations in the EPG5 gene (ectopic
P-granules autophagy protein 5) were reported in
2013 [227]. Epg5-deficient mice reproduced, among
other alterations, the myopathy described in Vici
patients, with fibre atrophy and degeneration [228].
Interestingly, accumulation of vacuoles, enlarged
mitochondria and glycogen, as well as increased lev-
els of LC3II, p62 and Nbrl were detected in muscle
from patients and/or Epg5-KO mice [227, 228]. In
patient fibroblasts and Epg5~/~ MEFs, autophagic
flux restriction was related to altered maturation of
autophagic vesicles (at the fusion or degradation
steps) and processing of endo/lysosomal compart-
ments (Fig. 3). Whether these defects contribute to
pathology in muscle and non-muscle tissues from Vici
patients, and whether they can be rescued by modu-
lating autophagy induction or expressing potentially
compensating proteins, remains to be investigated.
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Inclusion body myopathy associated with Paget’s
disease of the bone and frontotemporal dementia —
IBMPEFD is an autosomal dominant multi-systemic
disorder caused by mutations in the VCP gene, encod-
ing a type II member of the AAA+-ATPase family,
p97/VCP (Valosin Containing Protein), located in the
endoplasmic reticulum of all cells. Most IBMPFD
patients suffer from muscle weakness and char-
acteristic alterations, including rimmed vacuoles
(RV) and tubulofilamentous depositions are observed
in muscle cells. Accumulation of p62 and ubig-
uitinated proteins points to autophagy defects in
IBMPFED [229, 230]. By functioning as an ubiquitin-
selective segregase, VCP is involved in protein
processing, recycling and degradation [231]. VCP
deficiency impairs protein quality control by altering
the unfolded protein response (UPR) and endo-
plasmic reticulum-associated protein degradation
(ERAD) [232] (Fig. 3). VCP mutants may also
limit the clearance of the resulting protein aggre-
gates by altering the formation of aggresomes and
their delivery to the autophagy machinery [233].
Moreover, several reports suggest that VCP plays
a role in endosome and autophagic vesicle traffick-
ing: Autophagosomes accumulate in muscle from
IBMPFD patients and VCP-deficient mice, as well
as in primary human myoblasts [229, 234-237]. Ju
et al. further established in vitro that VCP deficiency
impairs autophagosome maturation and fusion, hence
leading to non-degradative vesicles [238] (Fig. 3).
Nonetheless, a recent paper indicated that, although
immature, autophagic vesicles are acidified and
contain lysosomal enzymatic activity, suggesting a
defect in the ultimate stages of their maturation
[239].

Interestingly, autophagy and endo-lysosomal traf-
ficking defects in IBMPFD seem to impair mTORC1
activation and thereby worsen muscle alterations
by promoting autophagy induction. Hence, whilst
rapamycin treatment aggravated muscle weakness
and atrophy of VCPRI33H._transgenic mice, electro-
poration of an active form of Rheb or Akt/PKB in
mutant muscle increased fibre size [240]. Alternative
strategies aiming at normalizing autophagic flux in
muscle, such as exercise or a lipid-enriched diet, ame-
liorated the phenotype of VCPRI3SH_KT homozygous
and heterozygous mice [241-243]. However, even if
changes in LC3 and p62 levels were reported in the
treated mice, further analyses are required to estab-
lish whether those strategies impact on the autophagic
flux, and whether they do so by limiting autophagy
induction or by releasing the degradation steps. This

may be essential to identify optimal therapeutic tar-
gets and strategies for IBMPFD.

Autosomal-Dominant Centronuclear Myopathy —
Dominant mutations in the DNM2 gene, encoding
the GTPase dynamin 2, cause AD-CNM which are
histologically recognized by the prominent internal-
ization of myonuclei, the presence of sarcoplasmic
radial strands and a predominance of type I fibres
[244, 245]. AD-CNM is not included in AVM,
and no hallmark of autophagy blockade is present
in muscle biopsies from patients. However, as
DNM?2 is involved in intracellular membrane traf-
ficking, endocytosis and cytoskeleton modulation,
its deficiency may impact on autophagy and on the
endo/lysosomal system. Data pointing in this direc-
tion were obtained in KI (p.R465W) mutant mice, a
recognized model for the disease [246, 247]. Early
lethality of homozygous mutant mice was related to
defects in global body metabolism consistent with
defective autophagic flux in metabolic organs dur-
ing the neonatal period [246]. A slight increase in
LC3II and p62 levels was detected in liver, but not
in muscle, from homozygous neonates. Accumula-
tion of p62 and non-degradative autophagosomes was
also found in DNM2-deficient MEFs [246]. The pres-
ence of abnormal autophagosome maturation was
supported by reduced acidification of autophagic
vesicles, which may involve impaired fusion between
autophagosome and endo/lysosomal compartments
and/or defective lysosomal biogenesis (Fig. 3). Accu-
mulation of LC3II and of autophagic vesicles in
muscle from starved, 6 month-old heterozygous mice
further pointed to altered autophagosome matura-
tion in diseased muscle. However, the autophagic
flux also seems compromised at the induction steps
in mutant MEFs, with reduced LC3Il accumula-
tion observed upon bafilomycin treatment [246].
Hence, DNM2 deficiency may lead to combined
defects in autophagosome formation and matura-
tion. Since there was no drastic accumulation of
autophagy vacuoles in diseased muscle, one may
assume that reduced induction may predominate
in DNM2-deficient muscle. This would be consis-
tent with the clinical and histological similarity to
XLMTM, related to impaired autophagy induction
(see above).

Muscle pathologies related to impaired
degradation steps

X-linked myopathy with excessive autophagy —
XMEA specifically affects skeletal muscle and ranges
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from severe neonatal to slowly progressive late-onset
forms; it was only recently linked to mutations in
the VMA21 gene, which encodes a major chaperone
of the lysosomal proton pump V-ATPase [248-250].
Muscle histology revealed fibre splitting with inter-
nalized capillaries, complement C5b-9 deposition
and AVSF, as described for Danon diseased mus-
cle [251] (Fig. 3). While there is currently no mouse
model for the disease, analyses conducted in fibrob-
lasts and lymphoblasts from XMEA patients have
brought information regarding potential pathomech-
anisms. Ramachadran et al. established that VMA21
deficiency restricts assembly and activity of the V-
ATPase, thereby leading to increased lysosomal pH,
altered lysosomal enzymatic activity and strongly
reduced long-lived protein degradation [248]. Co-
localization of autophagosome and lysosome markers
suggests an effective fusion of these vesicles but
a defect in autophagy degradation steps (Fig. 3).
Hence, (macro)autophagy, but also microautophagy
and CMA may be impaired in XMEA. Based on
the increased expression of some autophagy genes
(e.g. Beclinl, LC3), the authors further suggested
that autophagy blockade may lead to mMTORCI1 inhi-
bition by reducing the release of amino acids, and
thereby to increased autophagy induction (Fig. 3).
This may aggravate autolysosome proliferation and
enlargement [248]. Hence, mTORC1 dysregulation
as well as potential activation of TFEB, which may
explain the observed autophagic vesicle extrusion at
the plasma membrane still need to be documented
in XMEA muscle cells. Lastly, development of a
mouse model for the pathology is needed to com-
pare autophagy impairment in skeletal muscle vs
unaffected tissues (including cardiac muscle [252])
and to determine the consequences of modulating
autophagy, mTORC1 and/or TFEB on the muscle
phenotype.

Muscle diseases with autophagy perturbation
related to abnormal protein aggregation

Myofibrillar myopathies — MFM are rare neu-
romuscular disorders characterized by muscle
weakness, related to focal myofibril disintegration
and caused by mutations in genes encoding struc-
tural proteins (e.g. desmin or filamin C) or chaperones
(BAG3, aB-crystallin) found in the Z disk region
[253]. Protein aggregates and RV constitute a hall-
mark of MFM and point to autophagy perturbation
[254, 255] (Fig. 3). This is supported by the pres-
ence of autophagy-related proteins (e.g. p62, LC3) in

inclusions, revealed by proteomic analysis following
laser-microdissection [256]. Whether accumulation
of autophagy-related proteins reflects an adaptive
induction of autophagy in response to protein aggre-
gates or is rather a consequence of autophagy
impairment, remains unclear. Of note, some muta-
tions in structural proteins favour the aggregation of
their mutated form, in the absence of an autophagy
defect [257]. In cardiomyocytes, aggregate-prone
mutated forms of desmin or aB-crystallin target
autophagy induction in the early stages of the dis-
ease, but probably insufficiently to prevent their
accumulation over a prolonged time period [258,
259]. Interestingly, BAG3 and aB-crystallin func-
tion as chaperones for structural proteins, and either
prevent their aggregation or favour their degrada-
tion. In particular, BAG3 is involved in CASA,
which is induced upon mechanical tension during
muscle contraction and permits to degrade dam-
aged contractile components, such as filamin C [67].
BAG3-deficient mice develop a lethal myopathy
marked by myofibrillar degeneration and myofibre
apoptosis [260]. Abnormal aggregation of mutated
BAG3P2%PL also reproduced myofibrillar disintegra-
tion in zebrafish, likely by trapping wild-type BAG3
[261]. In these conditions, aggregates may perturb
the endo/lysosomal function as well as the matu-
ration of the autophagosome, thereby leading to a
vicious cycle where increased induction and impaired
autophagic degradation accelerate aggregate and
vacuole formation. If so, therapeutic interventions
aiming at inducing autophagy should be applied in
the early stages of the disease, before aggregates
accumulate. Beneficial effects of such strategies have
been obtained in desmin-related cardiomyopathy but
remain to be tested in skeletal muscle [257, 262-264].

Similar mechanisms may underlie Oculopha-
ryngeal Muscular Dystrophy (OPMD) with the
expanded, mutated form of PABPN1 (Poly(A) Bind-
ing Protein Nuclear 1) being prone to aggregate
in myonuclei. Whether dysregulated expression
of autophagy-related proteins detected in OPMD
reflects an induction and/or a blockade of autophagy
remains to be established [160, 265, 266]. As for
MEM related to BAG3 or aB-crystallin deficiency,
muscle alterations caused by dominant mutations
in DNAJB6 (associated to Limb-girdle muscular
dystrophy 1D/E), encoding another co-chaperone
likely involved in CASA, may imply excessive pro-
tein aggregation, compensatory autophagy induction
and/or perturbation of the autophagic flux, leading
to Z-disk degradation, debris accumulation and fibre
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vacuolization [267-269]. Mutations in the SILI gene,
which encodes a co-chaperone for BiP, a central qual-
ity controller for ER proteins, lead to a degenerative,
vacuolar myopathy (as part of the Marinesco-Sjogren
syndrome). Pathogenesis may also include induction
of inefficient autophagy, in response to nuclear/ER
stress and misfolded protein accumulation [270].

Muscle disease with abnormal autophagy
features but no molecular mechanisms
established

Sporadic Inclusion Body Myositis (SIBM) is an in-
flammatory, degenerative muscle disorder clinically
marked by atrophy and weakness of distal muscle.
Histologically, sIBM is characterized by lympho-
cytic infiltration, RV and intracellular amyloid
deposition [271]. Although the pathomechanisms
remain unclear, accumulation of autophagic vac-
uoles, ubiquitinated protein aggregates and abnormal
mitochondria led to the hypothesis that autophagy
impairment contributes to the disease [272, 273].
Consistently, reduced activity of lysosomal enzymes,
as well as increased levels of p62 and LC3II were
found in sIBM muscle biopsies and in human
myofibres subjected to sIBM-mimicking culture
conditions [274, 275]. Reduced GSK3-dependent
phosphorylation of Nbrl may promote the aggrega-
tion of ubiquitinated proteins, despite its increased
expression in sIBM biopsies [276, 277]. Further,
altered CMA leading to a-synuclein accumulation
and reduced mitophagy due to lysosomal dysfunc-
tion may contribute to mitochondrial abnormalities
detected in diseased muscle [271, 278]. Notwith-
standing, elevated expression of some autophagy-
and CMA-related components was reported in
sIBM muscle biopsies, which may reflect increased
induction of the process [278, 279]. Although thera-
peutic strategies potentiating lysosomal activity (e.g.
sodium phenylbutyrate) are proposed to limit myofi-
bre vacuolization and toxic product accumulation,
further experiments overcoming the limits of the cur-
rent in vivo and in vitro disease models are needed to
assess the involvement of autophagy in sIBM onset
and progression [280].

GNE myopathy (also reported as hIBM?2 or Distal
Myopathies with Rimmed Vacuoles) is an autoso-
mal recessive disorder caused by mutations in the
GNE gene and predominantly affecting distal mus-
cle. The gene encodes an enzyme essential for sialic
acid production; its deficiency may lead to glucocon-
jugate hypo-sialylation, which may impact on several

cell signalling pathways [281]. RV, cytoplasmic and
nuclear inclusions, and abnormal mitochondria accu-
mulate in muscle biopsies from patients. A knock-in
mouse model expressing a mutated form (D176V)
of the enzyme reproduced the muscle phenotype
observed in GNE myopathy [282]. In this model,
accumulation of A3 peptide and of its protein precur-
sor (APBPP) preceded RV formation, suggesting that
autophagy defects are secondary events in the disease.
Accordingly, perturbation in hypo-sialylated protein
folding and trafficking may cause ER stress and target
autophagy induction, thereby contributing to muscle
degeneration [283, 284]. Sialic acid supplementation
alleviated muscle alterations in mutant mice [285]
and is currently being tested in clinical trials [281].
Other distal myopathies (DM), such as Welander DM
(caused by deficiency in TIA1 mRNA binding pro-
tein), Vocal Cord and Pharyngeal DM (linked to
mutations in the nuclear matrix gene MATR3) or Tib-
ial Muscular Dystrophy, caused by mutations in 7TN
(encoding Titin), are marked by RV and may involve
autophagy perturbation similar to GNE myopathy
[286, 287].

For several additional myopathies, such as dys-
ferlinopathies [288] or the rare megaconial type
congenital muscular dystrophy [289, 290], autophagy
perturbation has been suggested but additional
investigations are needed to assess whether these per-
turbations are part of the pathomechanism leading to
muscle alterations and how they can be linked to the
genetic origin of the disease.

CONCLUSION

Abnormal autophagic flux has now been suggested
to be involved in the pathogenesis of numerous mus-
cle disorders, in which it may significantly contribute
to muscle atrophy. However, many of the studies lack
a comprehensive picture of the state of the flux in the
diseased muscle and thus conclusions on the patho-
logical significance of autophagy impairment often
seem premature. In particular, efforts should be made
to clarify whether the flux is enhanced in cases where
autophagosomes or autophagy markers accumulate.
The use of animal models, combined with in vitro
analyses of human muscle cells, is required before
a conclusion can be made on the pathogenic role
of autophagy in a disease. To this end, a compre-
hensive analysis of the autophagic flux in muscle
remains to be conducted, if possible, at different
stages of the disease, in the cases of MDC1A, DM1,
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XLMTM, laminopathies, GSDIIb, AD-CNM and
GNE myopathy. Another drawback is the need to elu-
cidate whether a given autophagy defect constitutes
a primary pathogenic event or rather a consequence
(or adaptive response) to primary pathogenic mus-
cle alterations. Autophagy perturbations in AVM are
primarily or secondarily related to lysosome dys-
function and have an established link to the genetic
cause (with the exception of sSIBM). By contrast, it is
delicate, although essential, to decipher the molecu-
lar mechanisms leading to signalling dysregulation
and abnormal autophagy induction in the case of
diseases caused by deficiency in components of the
extracellular matrix (e.g. COLVI; laminin) or of the
cytoskeleton (e.g. A-type lamins). Once autophagy
dysfunction is established, one needs to consider the
efficacy of therapeutic approaches aiming at normal-
izing the flux, both on muscle phenotype and the
restoration of the autophagy flux. Along these lines,
further investigations to identify signalling pathways
at play in autophagy control, or those which may be
dysregulated in diseases, will help to develop specific
strategies for individual disorders. A major challenge
will be to avoid excessive correction of the flux, which
may result in another extreme with too much (or
alternatively insufficient) protein and organelle dis-
posal. Therapeutic options should aim at balancing
the flux, and therefore, the long-term side effects
on muscle mass and force should always be con-
sidered. Although out of the scope of this review,
we would like to emphasize that other pathological
conditions associated with skeletal muscle atrophy
involve autophagy perturbation. Examples include
neurodegenerative disorders, such as spinobulbar
muscular atrophy, in which autophagy induction may
contribute to muscle wasting [291-293]. Excessive
autophagy seems also to contribute to cachexia-
induced muscle atrophy [98], while a decline in the
autophagic capacity may contribute to age-related
muscle alterations [14, 108]. Further understanding
of the consequences of autophagy defects in neuro-
muscular disorders will help to better elucidate the
mechanisms at play in these conditions and help to
guide us toward therapeutic strategies to counteract
the loss of muscle homeostasis.
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