Author Index Volume 27 (2014)

The issue number is given in front of the pagination

Abadeh, M.S., see Mohammadi, F.G. (3) 1445–1455
Abbas, A., see Akbari-Zadeh, M.-R. (1) 299–306
Abbas, A., see Biniaz, A. (1) 407–417
Abbas, A., see Vosough, M. (1) 465–473
 Abbasloo, M. and A.B. Saeid, Coatoms and comolecules of BL-algebras (1) 351–360
 Abbasloo, M. and A.B. Saeid, Krull dimension in BL-algebra (3) 1257–1265
 Abdoos, A.A., see Hajian, M. (4) 1659–1669
 Abdullah, S., M. Aslam and K. Ullah, Bipolar fuzzy soft sets and its applications in decision making problem (2) 729–742
 Abedini, A., see Hosseini, H. (3) 1457–1467
 Abouenour, L., M. Nasri, K. Bouzoubaa, A. Kabbaj and P. Rosso, Construction of an ontology for intelligent Arabic QA systems leveraging the Conceptual Graphs representation (6) 2869–2881
 Abraham, A., see Elloumi, W. (1) 515–525
 Abraham, A., see Pooranian, Z. (1) 187–199
 Abunasi, A., see Namin, A.S.S. (3) 1479–1485
 Adam, F. and N. Hassan, Multi Q-fuzzy parameterized soft set and its application (1) 419–424
 Adeniyan, K., see Nejad, H.C. (5) 2297–2303
 Adili, E., M.R. Sohrabi and H.M. Nehi, Prediction of microcracks in concrete using fuzzy systems (3) 1161–1168
 Afsari, F., E. Eslami and P. Eslami, Interval-valued intuitionistic fuzzy generators: Application to edge detection (3) 1309–1324
 Afsharnezhad, Z., see Javidmanesh, E. (1) 391–406
 Aggarwal, A., see Chandra, S. (5) 2603–2610
 Aghazadeh, H., A. Zare, M.-R. Akbari-Zadeh and J. Zare, Optimal PEM-FCPP operation considering detailed model based on artificial intelligence (6) 3059–3066
 Agrawal, S., see Norkey, G. (3) 1545–1555
 Ahmadi, A., see Mirzamohammad, M. (2) 929–935
 Ahmadi, R., see Rouhani, S.H. (6) 3145–3157
 Ai, F.-Y. and J.-Y. Yang, Approaches to dynamic multiple attribute decision making with 2-tuple linguistic information (6) 2715–2723
 Ai, F.-Y., J.-Y. Yang and P.-D. Zhang, An approach to multiple attribute decision making problems based on hesitant fuzzy set (6) 2749–2755
 Akbari, A., see Vosough, M. (1) 465–473
 Akbari-Zadeh, M.-R., M. Vosough, M. Mirjavadi and A. Abbasi, A novel modified shuffled frog leaping algorithm to solve the optimal capacitor allocation problem in distribution system (1) 299–306
 Akbari-Zadeh, M.-R., R. Kokabi and S. Gerami, Dstatcom allocation in the distribution system considering load uncertainty (2) 691–700
 Akbari-Zadeh, M.-R., see Aghazadeh, H. (6) 3059–3066
 Akbari-Zadeh, M.-R., see Baziar, A. (3) 1601–1607
 Akyol, D.E., see Ölçer, M.G. (5) 2163–2175
 Alegoz, M., see Celik, E. (6) 2847–2855
 Aleksic, A., see Tadić, D. (4) 2091–2101
 Ali, M.I., M. Shabir and Samina, Application of L-fuzzy soft sets to semirings (4) 1731–1742
 Alimi, A.M., see Elloumi, W. (1) 515–525
 Amiri, S.M.P., see Shekarian, E. (6) 3067–3080
 and J. Zare see Aghazadeh, H. (6) 3059–3066
 Ardekani, A.B., see Golmaryami, M. (3) 1567–1573
 Arik, F., A modified augmented max min model for weighted fuzzy goal programming (1) 339–350
 Arshadi Khamseh, A., F. Soleimani and B. Naderi, Pricing decisions for complementary products with firm’s different market powers in fuzzy environments (5) 2327–2340
 Arun Prakash, K., see Suresh, M. (6) 3081–3087
 Asghar, S., see Naeem, M. (3) 1589–1599
 Ashouri, A., see Safari Chabok, B. (5) 2431–2444
Askari, M.-R., see Saleh, S. (6) 3103–3110
Aslam, M., see Abdullah, S. (2) 729–742
Aslam, M., see Yaqoob, N. (5) 2445–2452
Aslam, M., see Yaqoob, N. (6) 3015–3032
Atta-ur-Rahman see Naseem, M.T. (5) 2497–2509
Awais, M.M., see Khalid, A. (2) 849–861
Aygün, H., see Çetkin, V . (1) 247–255
Aygün, H., see Varol, B.P. (4) 2127–2135
Azadbakht, B., see Khayat, O., (6) 2959–2967
Azadbakht, B., see Nejad, H.C. (5) 2289–2296
Azadbakht, B., see Nejad, H.C. (5) 2297–2303
Azam, A. and M. Rashid, A fuzzy coincidence theorem with applications in a function space (4) 1775–1781
Badar, R. and L. Khan, Power system oscillations damping using HABsW based FACTS-SSSC (3) 1575–1587
Bae, M., J. Kihm, S. Kang and S. Oh, Indexing and querying algorithm based on structure indexing for managing massive-scale RDF data (2) 575–587
Bagherpour, M., see Salari, M. (3) 1393–1406
Bakar, A.S.A. and A. Gegov, Ranking of fuzzy numbers based on centroid point and spread (3) 1179–1186
Baklouti, N., see Elloumi, W. (1) 515–525
Bano, T. and J. Singhai, A fuzzy-logic control based probabilistic broadcasting technique for mobile ad hoc networks (4) 1791–1802
Bassiliades, N., see Kravari, K. (2) 625–640
Batur, M.A. and R. Khalid, Optimal control of a continuous review production inventory system with Gamma distributed deterioration (6) 2937–2948
Bathae, S.M.T., see Hosseini, H. (3) 1457–1467
Baykasoğlu, A. and S. Maral, Fuzzy functions via genetic programming (5) 2355–2364
Baykasoğlu, A., see Subulan, K. (6) 2703–2714
Bayrak, D. and S. Yamak, The lattice of generalized normal L-subgroups (3) 1143–1152
Baziar, A., see Germi, M.B. (2) 913–920
Benbouzid, M., see Mahdad, B. (1) 451–463
Benmahammed, K., see Megherbi, H. (6) 2757–2773
Bhuruth, M., see Kanakasree, P. (2) 717–727
Biniaz, A. and A. Abbasi, Unsupervised ACO: Applying FCM as a supervisor for ACO in medical image segmentation (1) 407–417
Bisht, R.K., see Manro, S. (2) 761–768
Biswal, M., see Dash, P.K. (3) 1361–1373
Bogalinski, P., D. Davies, L. Koszalka, I. Pozniak-Koszalka and A. Kasprzak, Evaluation of strip nesting algorithms: An experimentation system for the practical users (2) 611–623
Bouras, A., see Zhang, H. (4) 1977–1989
Bouzoubaa, A., see Abouenour, L. (6) 2869–2881
Bustince, H., see Guerra, C. (3) 1433–1443
Büyüközkan, G. and S. Güleyüz, A new GDM based AHP framework with linguistic interval fuzzy preference relations for renewable energy planning (6) 3181–3195
Çak, İ., Tauberian theorems for Cesàro summability of sequences of fuzzy numbers (2) 937–942
Cai, X. and L. Han, Some induced Einstein aggregation operators based on the data mining with interval-valued intuitionistic fuzzy information and their application to multiple attribute decision making (1) 331–338
Cálad-Álvarez, A., R. Mejía-Gutiérrez, C.M. Sanín and E. Szczerbiicki, Smart experience engineering to support collaborative design problems based on constraints modelling (2) 655–666
Campión, M.J., R.G. Catalán, E. Induráin and G. Ochoa, Reinterpreting a fuzzy subset by means of a Sincov’s functional equation (1) 367–375
Cao, N.T., see Ton-That, A.H. (1) 273–285
Cardiff, J., see Perez-Tellez, F. (5) 2529–2544
Casanovas, M., see Mergi, J.M. (2) 783–792
Catak, M., Car license plate recognition based on EKE-Poisson transform (4) 2023–2028
Catalán, R.G., see Campión, M.J. (1) 367–375
Celik, E., A.T. Gumus and M. Alegoz, A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management (6) 2847–2855
Çetkin, V. and H. Aygün, On fuzzy soft topogenous structure (1) 247–255
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chachi, J.</td>
<td>see Hesamian, G.</td>
<td>(6) 3159–3167</td>
</tr>
<tr>
<td>Chaiprapat, S.</td>
<td>see Chansaad, A.P.</td>
<td>(5) 2379–2389</td>
</tr>
<tr>
<td>Chaira, T.</td>
<td>Enhancement of medical images in an Atanassov’s intuitionistic fuzzy domain using an alternative intuitionistic fuzzy generator with application to image segmentation</td>
<td>(3) 1347–1359</td>
</tr>
<tr>
<td>Chana, I.</td>
<td>see Rathore, N.</td>
<td>(6) 2821–2833</td>
</tr>
<tr>
<td>Chandra, S. and A. Aggarwal</td>
<td>On solving fuzzy Linear programming problems: A revisit to Zimmermann’s approach</td>
<td>(5) 2603–2610</td>
</tr>
<tr>
<td>Chang, W.</td>
<td>see Zhou, S.</td>
<td>(3) 1087–1094</td>
</tr>
<tr>
<td>Chen, C.-J. and S.-M. Yang</td>
<td>Application neural network controller and active mass damper in structural vibration suppression</td>
<td>(6) 2835–2845</td>
</tr>
<tr>
<td>Chen, G. and Q. Zhang</td>
<td>Aubin core and bargaining set for almost-convex fuzzy cooperative games</td>
<td>(3) 1375–1380</td>
</tr>
<tr>
<td>Chen, H.</td>
<td>see Liu, J.</td>
<td>(4) 2077–2089</td>
</tr>
<tr>
<td>Chen, H.</td>
<td>see Yang, Y.</td>
<td>(4) 1861–1872</td>
</tr>
<tr>
<td>Chen, H.-Y.</td>
<td>Hybrid adaptive fuzzy and neural network controller for the molten steel level control in strip casting processes</td>
<td>(6) 3123–3130</td>
</tr>
<tr>
<td>Chen, L. and Z. Xu</td>
<td>A prioritized aggregation operator based on the OWA operator and prioritized measure</td>
<td>(3) 1297–1307</td>
</tr>
<tr>
<td>Chen, M.</td>
<td>see Zhou, W.</td>
<td>(5) 2679–2690</td>
</tr>
<tr>
<td>Chen, N. and Z. Xu</td>
<td>Properties of interval-valued hesitant fuzzy sets</td>
<td>(1) 143–158</td>
</tr>
<tr>
<td>Chen, W. and Y. Shen</td>
<td>Approximate solution for a class of second-order ordinary differential equations by the fuzzy transform</td>
<td>(1) 73–82</td>
</tr>
<tr>
<td>Chen, X.</td>
<td>see Liu, D.</td>
<td>(5) 2409–2416</td>
</tr>
<tr>
<td>Chen, X.-.</td>
<td>see Peng, J.-.</td>
<td>(3) 1407–1417</td>
</tr>
<tr>
<td>Chen, Y. and P. Liu</td>
<td>Multi-attribute decision-making approach based on intuitionistic trapezoidal fuzzy generalized heronian OWA operator</td>
<td>(3) 1381–1392</td>
</tr>
<tr>
<td>Chen, Y.</td>
<td>see Liu, D.</td>
<td>(5) 2409–2416</td>
</tr>
<tr>
<td>Choi, H.I.</td>
<td>see Ton-That, A.H.</td>
<td>(1) 273–285</td>
</tr>
<tr>
<td>Christopher, C.S.</td>
<td>see King, G.R.G.</td>
<td>(6) 3213–3225</td>
</tr>
<tr>
<td>Chung, F.-L.</td>
<td>see Jiang, Y.</td>
<td>(4) 1639–1648</td>
</tr>
<tr>
<td>Dadi, Z.</td>
<td>see Javidmanesh, E.</td>
<td>(1) 391–406</td>
</tr>
<tr>
<td>Dang, Q.</td>
<td>see Zhao, C.</td>
<td>(4) 2011–2021</td>
</tr>
<tr>
<td>Danyali, H.</td>
<td>see Ghofrani, F.</td>
<td>(6) 3169–3180</td>
</tr>
<tr>
<td>Da Qin, W.</td>
<td>see Mei, C.</td>
<td>(4) 1897–1903</td>
</tr>
<tr>
<td>Dash, P.K.</td>
<td>B.N. Sahu and M. Biswal, Nonstationary signal pattern recognition using fast time-time filtering and decision tree</td>
<td>(3) 1361–1373</td>
</tr>
<tr>
<td>Davies, D.</td>
<td>see Bogołinski, P.</td>
<td>(2) 611–623</td>
</tr>
<tr>
<td>Davvaz, B.</td>
<td>see Yaqoob, N.</td>
<td>(6) 3015–3032</td>
</tr>
<tr>
<td>de Jesús Moreno, J.</td>
<td>see Sartorius, A.R.</td>
<td>(5) 2319–2326</td>
</tr>
<tr>
<td>Devi, R.</td>
<td>see Ramathilagam, S.</td>
<td>(5) 2573–2595</td>
</tr>
<tr>
<td>Dhanalakshmi, K.</td>
<td>see Senthilkumar, P.</td>
<td>(1) 9–18</td>
</tr>
<tr>
<td>Ding, G.</td>
<td>see Wang, B.</td>
<td>(5) 2597–2602</td>
</tr>
<tr>
<td>Ding, J.-S.</td>
<td>see Zhang, M.</td>
<td>(3) 1169–1177</td>
</tr>
<tr>
<td>Do, Q.H.</td>
<td>see Chen, J.-F.</td>
<td>(5) 2551–2561</td>
</tr>
<tr>
<td>Dong, L.S.</td>
<td>see Vu, H.</td>
<td>(3) 1491–1506</td>
</tr>
<tr>
<td>Dookhitram, K.</td>
<td>see Kanaksabee, P.</td>
<td>(2) 717–727</td>
</tr>
<tr>
<td>Du, Z.</td>
<td>see Liu, Y.</td>
<td>(6) 2775–2784</td>
</tr>
<tr>
<td>Dubey, A.K.</td>
<td>see Norkey, G.</td>
<td>(3) 1545–1555</td>
</tr>
<tr>
<td>Dudek, W.A.</td>
<td>M. Khan and N. Khan, Characterizations of intra-regular Abel-Grassmann’s groupoids</td>
<td>(6) 2915–2925</td>
</tr>
<tr>
<td>Dudek, W.A.</td>
<td>see Borzooei, R.A.</td>
<td>(6) 2997–3005</td>
</tr>
<tr>
<td>Ebrahimnejad, A.</td>
<td>and J.L. Verdegay, A novel approach for sensitivity analysis in linear programs with trapezoidal fuzzy numbers</td>
<td>(1) 173–185</td>
</tr>
<tr>
<td>Ebrahimnejad, A.</td>
<td>and J.L. Verdegay, On solving bounded fuzzy variable linear program and its applications</td>
<td>(5) 2265–2280</td>
</tr>
<tr>
<td>Effati, S.</td>
<td>see Javidmanesh, E.</td>
<td>(1) 391–406</td>
</tr>
<tr>
<td>Eftekhari, M.</td>
<td>see Mahdizadeh, M.</td>
<td>(6) 3033–3046</td>
</tr>
<tr>
<td>El-Bardini, M.</td>
<td>see El-Nagar, A.M.</td>
<td>(4) 1999–2010</td>
</tr>
<tr>
<td>Elloumi, W., N. Baklouti, A.</td>
<td>Abraham and A.M. Alimi, The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization</td>
<td>(1) 515–525</td>
</tr>
<tr>
<td>El-Nagar, A.M. and M. El-Bardini</td>
<td>Simplified interval type-2 fuzzy logic system based on new type-reduction</td>
<td>(4) 1999–2010</td>
</tr>
<tr>
<td>Erginler, N.</td>
<td>Fuzzy rule-based ”p and n ”p control charts</td>
<td>(1) 159–171</td>
</tr>
<tr>
<td>Eslami, E.</td>
<td>see Afshari, F.</td>
<td>(3) 1309–1324</td>
</tr>
<tr>
<td>Eslami, E.</td>
<td>see Forouzesh, F.</td>
<td>(3) 1557–1565</td>
</tr>
<tr>
<td>Eslami, P.</td>
<td>see Afshari, F.</td>
<td>(3) 1309–1324</td>
</tr>
<tr>
<td>Faiçal, B.S.</td>
<td>see Pessin, G.</td>
<td>(6) 3047–3058</td>
</tr>
<tr>
<td>Fang, L.</td>
<td>see Yu, D.</td>
<td>(1) 131–142</td>
</tr>
<tr>
<td>Farahani, M.</td>
<td>Design of PID controller using multi-objective genetic algorithm for load frequency control in interconnected power systems</td>
<td>(2) 709–716</td>
</tr>
<tr>
<td>Farhadinia, B.</td>
<td>Fuzzy multicriteria decision-making method based on a family of novel measured functions under vague environment</td>
<td>(6) 2797–2808</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Volume</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Fei, J. and M. Xin</td>
<td>Adaptive fuzzy backstepping sliding mode control for MEMS gyroscope</td>
<td>27</td>
</tr>
<tr>
<td>Feng, L., see Gong, Y.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fereidunain, A., see Hosseini, H.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Filho, G.P.R., see Pessin, G.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Foroud, A.A., see Hajian, M.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Forouzesh, F., E. Eslami and A.B. Saeid</td>
<td>Stabilizer theory in (MV)-algebras</td>
<td>3</td>
</tr>
<tr>
<td>Fu, F., see Zhu, J.-Q.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Fu, Y., see Xin, X.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fukuyama, H., see Paryab, K.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ganesan, G.</td>
<td>see Satish, B.N.V.</td>
<td>4</td>
</tr>
<tr>
<td>Ganji, E., R.K. Moghaddam, A. Toloui and M. Taghizadeh</td>
<td>A new frequency control approach for isolated WT/FC/UC power system using improved fuzzy PSO & maximum power point tracking of the WT system</td>
<td>4</td>
</tr>
<tr>
<td>Gao, X.</td>
<td>Regularity index of uncertain graph</td>
<td>4</td>
</tr>
<tr>
<td>Gegov, A., N. Gobalakrishnan and D. Sanders</td>
<td>Rule base compression in fuzzy systems by filtration of non-monotonic rules</td>
<td>4</td>
</tr>
<tr>
<td>Gegov, A., see Bakar, A.S.A.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gentili, P.L.</td>
<td>The human sensory system as a collection of specialized fuzzifiers: A conceptual framework to inspire new artificial intelligent systems computing with words</td>
<td>5</td>
</tr>
<tr>
<td>Gerami, S., see Akbari-Zadeh, M.-R.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Germi, M.B., M. Mirjavadi, A.S.S. Namin and A. Baziar</td>
<td>A hybrid model for daily peak load power forecasting based on SAMBA and neural network</td>
<td>2</td>
</tr>
<tr>
<td>Ghareeb, A., see Yaqoob, N.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ghofrani, F., M.S. Helfroush, H. Danyali and K. Kazemi</td>
<td>Improving the performance of machine learning algorithms using fuzzy-based features for medical x-ray image classification</td>
<td>6</td>
</tr>
<tr>
<td>Glock, C.H., see Shekarian, E.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Golbalakrishnan, N., see Gegov, A.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Golmaryami, M., S. Saleh, A.B. Ardekani and F. Kavousi-Fard</td>
<td>A new modified bat algorithm to solve optimal management of multi-objective reconfiguration problem</td>
<td>3</td>
</tr>
<tr>
<td>Golshannavaz, S.</td>
<td>Optimal simultaneous siting and sizing of DGs and capacitors considering reconfiguration in smart automated distribution systems</td>
<td>4</td>
</tr>
<tr>
<td>Gomathi, R. and A.V.A. Kumar</td>
<td>Inpainting for satellite imagery using thin plate spline radial basis function neural networks in shearlet domain</td>
<td>5</td>
</tr>
<tr>
<td>Gong, Y., L. Feng and G. Liu</td>
<td>Fuzzy multi-attribute group decision making method with incomplete weight information under interval type-2 fuzzy environment</td>
<td>1</td>
</tr>
<tr>
<td>Gu, M., see Yue, Y.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Guerra, C., A. Jurio, H. Bustince and C. Lopez-Molina</td>
<td>Multichannel generalization of the Upper-Lower Edge Detector using ordered weighted averaging operators</td>
<td>3</td>
</tr>
<tr>
<td>Guerreiro, A.M.G., see Andrade, A.O.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Güleryüz, S., see Büyüközkan, G.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Gumus, A.T., see Celik, E.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Guo, C., see Zhang, C.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Guo, R., see Xu, Y.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Gürdal, M., see Savaş, E.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Gürdal, M., see Savaş, E.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Haddad, A.A., see Isfahani, S.N.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Haider, A.A., A. Nadeem and S. Rafiq</td>
<td>Multiple objective test suite optimization: A fuzzy logic based approach</td>
<td>2</td>
</tr>
<tr>
<td>Hajian, M., A.A. Foroud and A.A. Abdoos</td>
<td>Power transformer protection scheme based on MRA-SSVM</td>
<td>4</td>
</tr>
<tr>
<td>Hamam, Y., see Letting, L.K.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Han, L., see Cai, X.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hao, S., see Man, Y.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Haq, N., see Sargano, A.B.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Hashemi Doolabi, S.M. and J. Roshanian</td>
<td>Sequential optimization and possibility assessment, a new efficient method for reliable optimal design</td>
<td>1</td>
</tr>
<tr>
<td>Hassann, N., see Adam, F.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hazarika, B.</td>
<td>Lacunary ideal convergent double sequences of fuzzy real numbers</td>
<td>1</td>
</tr>
<tr>
<td>He, L. and H. Teng</td>
<td>GRA model for dynamic hybrid multiple attribute decision making</td>
<td>2</td>
</tr>
<tr>
<td>He, Y., see Liu, J.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Helfroush, M.S., see Ghofrani, F.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hesamian, G. and J. Chachi</td>
<td>Fuzzy Sign test for imprecise quantities: A (p)-value approach</td>
<td>6</td>
</tr>
</tbody>
</table>
Hoa, N.V., see Vu, H. (3) 1491–1506
Hong, T.-P., see Lin, C.-W. (1) 535–548
Hong, T.-P., see Ramathilagam, S. (5) 2573–2595
Hosseina, M., see Hosseini, H. (3) 1457–1467
Hosseini, H., S.M.T. Bathaee, A. Abedini, M. Hosseina and A. Fereidunain, Defending false data injection attack on smart grid network using neuro-fuzzy controller (3) 1457–1467
Hosseini, H., see Rouhani, S.H. (6) 3145–3157
Hu, C., see Ge, D.-y. (5) 2243–2255
Hu, Q., see Lu, H. (4) 2103–2113
Huang, J.-Y., Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making (1) 505–513
Huang, Q., see Liu, N. (3) 1285–1296
Husain, A.R., see Ling, T.G. (4) 1743–1755
Hussain, A., see Khan, S.A. (6) 3131–3143
Ibedou, I., Separation axioms in fuzzy bitopological spaces (2) 943–951
Induráin, E., see Campión, M.J. (1) 367–375
Islam, D., see Reza, C.M.F.S. (4) 1631–1638
Izadikhah, M., A. Saeidifar and R. Roostaee, Extending TOPSIS in fuzzy environment by using the nearest weighted interval approximation of fuzzy numbers (6) 2725–2736
Jafarian, A. and S.M. Nia, Artificial neural network approach to the fuzzy Abel integral equation problem (1) 83–91
Jahromi, M.Z., see Taheri, M. (4) 1923–1934
Jalalzadeh, L., see Paryab, K. (1) 37–48
Jangjoo, M.A. and A.R. Seifi, Optimal voltage control and loss reduction in microgrid by active and reactive power generation (4) 1649–1658
Javadi, B., see Pooranian, Z. (1) 187–199
Ji, W., Interval type-2 fuzzy reasoning model of rehabilitation training for stroke (2) 827–837
Jia, C., see Li, X.-l. (2) 965–975
Jiang, D., see Meng, F. (1) 119–129
Jiang, X.-P. and G.-W. Wei, Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making (5) 2153–2162
Jiang, Y., F.-L. Chung and S. Wang, Enhanced fuzzy partitions vs data randomness in FCM (4) 1639–1648
Jleli, M., E. Karapınar and B. Samet, On cyclic (ψ, φ)-contractions in Kaleva-Seikkala’s type fuzzy metric spaces (4) 2045–2053
Ju, Y. and S. Yang, Approaches for multi-attribute group decision making based on intuitionistic trapezoid fuzzy linguistic power aggregation operators (2) 987–1000
Ju, Y., S. Yang and X. Liu, Some new dual hesitant fuzzy aggregation operators based on Choquet integral and their applications to multiple attribute decision making (6) 2857–2868
Ju, Y., see Liu, X. (3) 1187–1201
Ju, Y., see Yang, S. (4) 1935–1947
Ju, Y., W. Zhang and S. Yang, Some dual hesitant fuzzy Hamacher aggregation operators and their applications to multiple attribute decision making (5) 2481–2495
Ju, Y., X. Liu and S. Yang, Interval-valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making (3) 1203–1218
Ju, Y., X. Liu and S. Yang, Trapezoid fuzzy 2-tuple linguistic aggregation operators and their applications to multiple attribute decision making (3) 1219–1232
Jung, J.J., see Pham, X.H. (2) 589–599
Jurio, A., see Guerra, C. (3) 1433–1443
Kabbaj, A., see Abouenour, L. (6) 2869–2881
Kahraman, C., see Senvar, O. (2) 769–781
Kalaiyani, L., see Maheswari, R.V. (5) 2649–2664
Kamyabnia, A., see Salari, M. (3) 1393–1406
Kamyar, M., see Vosoogh, M. (1) 465–473
Kanaksabée, P., K. Doohitram and M. Bhuruth, Krylov subspace method for fuzzy eigenvalue problem (2) 717–727
Kang, S., see Bae, M. (2) 575–587
Kannan, P. and R.S.S. Kumari, VLSI architecture for LGXP texture for face recognition (5) 2635–2647
Kannan, S.R., see Ramathilagam, S. (5) 2573–2595
Kar, S. and S. Purkait, Characterization of some k-regularities of semirings in terms of fuzzy ideals of semirings (6) 3089–3101
Karapınar, E., see Jleli, M. (4) 2045–2053
Karapınar, E., see Rold, A.-F. (5) 2257–2264
Kaszprzak, A., see Bogalinski, P. (2) 611–623
Kavitha, M. and S. Palani, Hierarchical classifier for soft and hard exudates detection of retinal fundus images (5) 2511–2528
Kavousi-Fard, F., see Golmaryami, M. (3) 1567–1573
Kavousi-Fard, F., see Namin, A.S.S. (3) 1479–1485
Kazemi, K., see Ghofrani, F. (6) 3169–3180
Khalid, A. and M.M. Awais, Comparing ranking methods: Complete RCI preference and multiplicative preference relations (2) 849–861
Khan, L., see Badar, R. (3) 1575–1587
Khan, M., see Dudek, W.A. (6) 2915–2925
Khan, N., see Dudek, W.A. (6) 2915–2925
Khayat, O., F.N. Rahatabad, M. Siahi and B. Azadbakht, An evolutionary-based entropic image thresholding approach for nano-scale light microscopic image segmentation (6) 2959–2967
Khayat, O., see Azadbakht, B. (5) 2623–2634
Khayat, O., see Nejad, H.C. (5) 2289–2296
Khayat, O., Siahi, M. (6) 3197–3204
Khayat, O., Structural parameter tuning of the first-order derivative of an adaptive neuro-fuzzy system for chaotic function modeling (1) 235–245
Khooban, M.H., see Shahsadeghi, M. (4) 1849–1859
Kihm, J., see Bae, M. (2) 575–587
Kim, C.B., H.S. Kim and K.S. So, On the fuzzy polynomial ideals (1) 487–494
Kim, H.S., see Kim, C.B. (1) 487–494
King, G.R.G. and C.S. Christopher, Improved block based segmentation algorithm for compression of compound images (6) 3213–3225
Kokabi, R., see Akbari-Zadeh, M.-R. (2) 691–700
Koszalka, L., see Bogalinski, P. (2) 611–623
Kravari, K., N. Bassiliades and C. Papavasileiou, Choreographing agent encounters in the Semantic Web using rules (2) 625–640
Küçük, A., see (5) 2417–2430
Kumam, P., see Phiangsungnoen, S. (5) 2463–2472
Kumar, A., see Verma, T. (4) 1689–1691
Kumar, A.V.A., see Gomathi, R. (5) 2391–2398
Kumar, A.V.A., see Pushpa Lakshmi, R. (1) 317–329
Kumari, R.S.S., see Kannan, P. (5) 2635–2647
Letting, L.K., J.L. Munda and Y. Hamam, Optimisation and rule firing analysis in fuzzy logic based maximum power point tracking (3) 1267–1276
Li, D.-F., see Yu, D.-J. (4) 1679–1688
Li, L., see Zhang, X. (1) 549–553
Li, W., Approaches to decision making with Interval-valued intuitionistic fuzzy information and their application to enterprise financial performance assessment (1) 1–8
Li, X. and G. Wei, GRA method for multiple criteria group decision making with incomplete weight information under hesitant fuzzy setting (3) 1095–1105
Li, X., see Liu, Y. (6) 2775–2784
Lian, Z.-t., see Ge, D.-y. (5) 2243–2255
Liang, C.-Y. and F.-G. Shi, Degree of continuity for mappings of (L, M)-fuzzy topological spaces (5) 2665–2677
Liao, H. and Z. Xu, Automatic procedures for group decision making with intuitionistic fuzzy preference relations (5) 2341–2353
Liao, H. and Z. Xu, Multi-criteria decision making with intuitionistic fuzzy PROMETHEE (4) 1703–1717
Liao, H. and Z. Xu, Subtraction and division operations over hesitant fuzzy sets (1) 65–72
Liao, H., Z. Xu and M. Xia, Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation (6) 2969–2985
Liao, Y.-H., see Hwang, Y.-A. (6) 3007–3014
Lib, L.-B., see Zhang, M. (3) 1169–1177
Lin, C.-M., see Mon, Y.-J. (1) 443–450
Lin, C.-M., see Mon, Y.-J. (3) 1325–1334
Lin, C.-W. and T.-P. Hong, Mining fuzzy frequent itemsets based on UBFFP trees (1) 535–548
Lin, J. and Q. Zhang, The Shapley function for n-person fuzzy cooperative games with combined weighted form (2) 953–964
Lin, R., see Wei, G. (1) 19–36
Lin, R., X. Zhao, H. Wang and G. Wei, Hesitant fuzzy linguistic aggregation operators and their application to multiple attribute decision making (1) 49–63
Lin, Y., J. Xu and F. Makedon, Evidence equilibrium: Nash equilibrium in judgment processes (3) 1533–1543
Linda, J.P. and M.S. Sunitha, Fuzzy detour g-interior nodes and fuzzy detour g-boundary nodes of a fuzzy graph (1) 435–442

Ling, T.G., M.F. Rahmat and A.R. Husain, ANFIS modeling of Electro-Hydraulic Actuator system through physical modeling and FCM gap statistic in initial FIS determination (4) 1743–1755

Ling, W. and W.L. Lu, Fuzzy rules extraction based on output-interval clustering and support vector regression for forecasting (5) 2563–2571

Liu, D., D. Wang, J. Wu, Y. Wang, L. Wang, X. Zou, Y. Chen and X. Chen, A risk assessment method based on RBF artificial neural network - cloud model for urban water hazard (5) 2409–2416

Liu, D.-x., see Li, X.-l. (2) 965–975

Liu, G., see Gong, Y. (1) 307–316

Liu, J., H. Chen, L. Zhou, Z. Tao and Y. He, On the properties of the generalized OWHA operators and their application to group decision making (4) 2077–2089

Liu, J., see Liu, N. (3) 1285–1296

Liu, N., J. Liu and Q. Huang, The application of improved Markov Chain Monte Carlo method in liquidity management of commercial banks (3) 1285–1296

Liu, P. and X. Qi, Some generalized dependent aggregation operators with 2-dimension linguistic information and their application to group decision making (4) 1761–1773

Liu, P., see (3) 1381–1392

Liu, Q. and J. Zhan, Fuzzy parameterized fuzzy soft h-ideals of hemirings (3) 1469–1477

Liu, Q., An extended TOPSIS method for multiple attribute decision making problems with unknown weight based on 2-dimension uncertain linguistic variables (5) 2221–2230

Liu, Y., see Ju, Y. (3) 1203–1218

Liu, X., see Ju, Y. (3) 1219–1232

Liu, X., see Ju, Y. (6) 2857–2868

Liu, X., see Qin, J. (5) 2177–2190

Liu, X., see Sang, X. (1) 475–486

Liu, X., Y. Ju and S. Yang, Hesitant intuitionistic fuzzy linguistic aggregation operators and their applications to multiple attribute decision making (3) 1187–1201

Liu, Y., A method for 2-tuple linguistic dynamic multiple attribute decision making with entropy weight (4) 1803–1810

Liu, Y., see Shi, J. (2) 701–707

Liu, Y., X. Li and Z. Du, Reliability analysis of a random fuzzy repairable parallel system with two non-identical components (6) 2775–2784

Luo, J., see Ju, Y. (3) 1219–1232

Luo, J., see Ju, Y. (6) 2857–2868

Ma, X. and J. Zhan, Characterizations of hemiregular hemirings via a kind of new soft union sets (6) 2883–2895

Ma, Y., W. Pan, S. Zhu, H. Yin and J. Luo, An improved semi-supervised learning method for software defect prediction (5) 2473–2480

Ma, Z.M., Lattices of (generalized) fuzzy filters in residuated lattices (5) 2281–2287

Mahapatra, G.S., see Mahapatra, B.S. (2) 743–751

Mahapatra, G.S., B.S. Mahapatra and P.K. Roy, Network reliability evaluation for fuzzy components: An interval programming approach (2) 743–751

Mahdad, B., K. Srairi and M. Benbouzid, Solving practical power system problems using hierarchical interactive PSO strategy considering SVC controllers (1) 451–463

Mahdizadeh, M. and M. Effekhari, Generating fuzzy rule base classifier for highly imbalanced datasets using a hybrid of evolutionary algorithms and subtractive clustering (6) 3033–3046

Maheswari, R.V., P. Subburaj, B. Vigneshwaran and L. Kalaivani, Non linear support vector machine based partial discharge patterns recognition using fractal features (5) 2649–2664

Maia, D.S., see Andrade, A.O. (1) 201–209

Makedon, F., see Lin, Y. (3) 1533–1543

Maksimović, M., V. Vujović and V. Milos´ević, Fuzzy logic and Wireless Sensor Networks – A survey (2) 877–890

Man, Y., O. Yuanxin and S. Hao, Investigating association rules for sentiment classification of Web reviews (4) 2055–2065
Manjusha, O.T. and M.S. Sunitha, Notes on domination in fuzzy graphs (6) 3205–3212
Manro, S. and R.K. Bisht, Common fixed points of minimal contractive conditions in intuitionistic fuzzy metric space (2) 761–768
Manro, S., see Rold, A.-F. (5) 2257–2264
Maral, S., see Baykasoglu, A. (5) 2355–2364
Mayilsamy, K., see Rameshkumar, R. (1) 361–365
Meesad, P., Long, N.C. (3) 1335–1346
Megherbi, A.C., see Megherbi, H. (6) 2757–2773
Megherbi, H., A.C. Megherbi, N. Megherbi and K. Benmahammed, Design and robustness enhancement of sectorial fuzzy controller via evolutionary algorithm (6) 2757–2773
Megherbi, N., see Megherbi, H. (6) 2757–2773
Mei, C., G. Zaiwu, W. DaQin and W. Minjie, A pattern recognition method based on linguistic ordered weighted distance measure (4) 1897–1903
Mejía-Gutiérrez, R., see Cálad-Álvarez, A. (2) 655–666
Mirzamohammad, M., see Nejad, H.C. (5) 2297–2303
Mishra, K.K., S. Tiwari and A.K. Misra, Improved environmental adaption method and its application in test case generation (5) 2305–2317
Misra, A.K., see Mishra, K.K. (5) 2305–2317
Modarres, M., see Khalaj, M.R. (6) 2897–2914
Mohgaddam, R.K., see Ganji, E. (4) 1949–1962
Mohgaddam, R.K., see Ganji, E. (4) 1963–1976
Mohammadi, F.G. and M.S. Abadeh, A new metaheuristic feature subset selection approach for image steganalysis (3) 1445–1455
Mohammadi, M., see Nejad, H.C. (5) 2289–2296
Mohammadi, M., see Nejad, H.C. (5) 2297–2303
Mohammadi, S., see Saleh, S. (6) 3103–3110
Mohtashami, A., The optimal solution for several different degrees of feasibility for fuzzy linear and non-linear programming problems (5) 2611–2622
Mon, Y.-J. and C.-M. Lin, 3-Dimensional sliding mode adaptive MIMO recurrent fuzzy neural network control for two-link manipulator system (3) 1325–1334
Mon, Y.-J. and C.-M. Lin, ANFIS-based integral terminal sliding mode control for disturbed chaotic system (1) 443–450
Motamed, S., see Borumand Saeid, A. (6) 2949–2957
Motameni, H., see Salmani, S. (3) 1519–1531
Mozayani, N., see Beigi, A. (2) 641–653
Munda, J.L., see Letting, L.K. (3) 1267–1276
Muzaffar, M.Z., see Naseem, M.T. (5) 2497–2509
Nadeem, A., see Haider, A.A. (2) 863–875
Naderi, B., see Arshadi Khamseh, A. (5) 2327–2340
Naeem, M. and S. Asghar, Structure learning via non-parametric factorized joint likelihood function (3) 1589–1599
Namin, A.S.S., A. Abunasri and F. Kavousi-Fard, Optimal operation of distributed generation in power systems considering uncertainty effects through probabilistic load flow (3) 1479–1485
Namin, A.S.S., see Germi, M.B. (2) 913–920
Nasri, M., see Abouenour, L. (6) 2869–2881
Nazir, M., see Khan, S.A. (6) 3131–3143
Nehi, H.M., see Adili, E. (3) 1161–1168
Neja, H.C., Siahi, M. (6) 3197–3204
Nejad, H.C., B. Azadbakht, K. Adenihvand, M. Mohammadi and M. Mirzamohammad, Fuzzy
cellular learning automata for lesion detection in retina images (5) 2297–2303
Nejad, H.C., O. Khayat, B. Azadbakht and M. Mohammadi, Using feed forward neural network for electrocardiogram signal analysis in chaotic domain (5) 2289–2296
Ngo, L.T., see Nguyen, D.D. (6) 3111–3122
Nguyen, N.T., see Nguyen, V.D. (2) 667–677
Nguyen, N.T., Special section on computational collective intelligence (2) 573
Nguyen, T.B. and F. Wagner, Collective intelligent toolbox based on linked model framework (2) 601–609
Nguyen, V.D. and N.T. Nguyen, A method for temporal knowledge integration using indeterminate valid time (2) 667–677
Nia, S.M., see Jafarian, A. (1) 83–91
Niknam, T., see Shahsadeghi, M. (4) 1849–1859
Ning, X., J. Yuan, X. Yue and A. Ramirez-Serrano, Induced generalized Choquet aggregating operators with linguistic information and their application to multiple attribute decision making based on the intelligent computing (3) 1077–1085
Ochoa, G., see Campión, M.J. (1) 367–375
Oh, S., see Bae, M. (2) 575–587
Ölçer, M.G. and D.E. Akyol, A MADM based decision support system for international contractor rating (5) 2014–2175
Oliva, G., S. Panzieri and R. Setola, Discrete-time linear systems with fuzzy dynamics (3) 1129–1141
Osório, F.S., see Pessin, G. (6) 3047–3058
Ouyang, R., see Yang, R. (4) 1693–1702
Ouzrout, Y., see Zhang, H. (4) 1977–1989
Palacios-Marqués, D., see Merigó, J.M. (2) 901–912
Palani, S., see Kavitha, M. (5) 2511–2528
Pan, W., see Ma, Y. (5) 2473–2480
Pang, B. and F.-G. Shi, Characterizations of \((L, M)\)-fuzzy pseudo-metrics by pointwise pseudo-metric chains (5) 2399–2407
Pang, B., Degrees of continuous mappings, open mappings, and closed mappings in \(L\)-fuzzifying topological spaces (2) 805–816
Pang, B., Enriched \((L, M)\)-fuzzy convergence spaces (1) 93–103
Pang, B., see Shi, F.-G. (4) 1757–1760
Pang, B., see Wang, B. (5) 2597–2602
Panzieri, S., see Oliva, G. (3) 1129–1141
Papavasileiou, C., see Kravari, K. (2) 625–640
Paripour, M., see Mirzaee, F. (1) 211–220
Paryab, K., R.K. Shiraz, L. Jalalzadeh and H. Fukuyama, Imprecise data envelopment analysis model with bifuzzy variables (1) 37–48
Peng, J., see Song, M. (3) 1507–1517
Peng, X., see Yang, Y. (4) 1861–1872
Perez-Tellez, F., J. Cardiff, P. Rosso and D. Pinto, Weblog and short text feature extraction and impact on categorisation (5) 2529–2544
Peris-Ortiz, M., see Merigó, J.M. (2) 901–912
Pham, X.H. and J.J. Jung, Recommendation system based on multilingual entity matching on linked open data (2) 589–599
Phiangsungnoen, S., W. Sintunavarat and P. Kumam, Common \(\alpha\)-fuzzy fixed point theorems for fuzzy mappings via \(\beta\)-admissible pair (5) 2463–2472
Piñón, O., see Sartorius, A.R. (5) 2319–2326
Pinto, D., see Perez-Tellez, F. (5) 2529–2544
Pooranian, Z., M. Shojafar, B. Javadi and A. Abraham, Using imperialist competition algorithm for independent task scheduling in grid computing (1) 187–199
Pozniak-Koszalka, I., see Bogalinski, P. (2) 611–623
Purkait, S., see Kar, S. (6) 3089–3101
Pushpa Lakshmi, R. and A.V.A. Kumar, A fuzzy based secure QoS routing protocol using ant colony optimization for mobile Ad hoc network (1) 317–329
Qi, X., see Liu, P. (4) 1761–1773
Qin, J. and X. Liu, An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators (5) 2177–2190
Qureshi, I.M., see Naseem, M.T. (5) 2497–2509
Radfar, A., see Borzooei, R.A. (6) 2997–3005
Seifi, A.R., see Jangjoo, M.A. (4) 1649–1658
Sekhari, A., see Zhang, H. (4) 1977–1989
Senthilkumar, P., M. Umamathy and K. Dhanalakshmi, Modulated adaptive fuzzy controller for position control of SMA wire actuator (1) 9–18
Senthilkumar, S. and S. Vijayan, High performance emotional intelligent controller for induction motor speed control (2) 891–900
Senvar, O. and C. Kahraman, Type-2 fuzzy process capability indices for non-normal processes (2) 769–781
Šešelja, B., A. Tepavčević and M. Udovicči, Fuzzy ordered structures and fuzzy lattice ordered groups (3) 1119–1127
Setola, R., see Oliva, G. (3) 1129–1141
Seyyedtabai, S. and A. Khalaqi, Single chip digital CMOS implementation of a reconfigurable fuzzy logic traffic controller (2) 921–928
Sezgin Sezer, A., Certain characterizations of LA-semigroups by soft sets (2) 1035–1046
Shabir, M., see Ali, M.I. (4) 1731–1742
Shahsadeghi, M., M.H. Khooban and T. Niknam, A robust and simple optimal type II fuzzy sliding mode control strategy for a class of nonlinear chaotic systems (4) 1849–1859
Sharma, B.D., see Verma, R. (4) 1811–1824
Sheikholeslami, A., see Rouhani, S.H. (6) 3145–3157
Shen, W., see Zhang, Q. (2) 1011–1019
Shen, Y., see Chen, W. (1) 73–82
Shi, F.-G. and B. Pang, Redundancy of fuzzy soft topological spaces (4) 1757–1760
Shi, F.-G., see Liang, C.-Y. (5) 2665–2677
Shi, F.-G., see Pang, B. (5) 2399–2407
Shi, F.-G., see Xiu, Z.-Y. (3) 1243–1255
Shi, J., C. Meng and Y. Liu, Approach to multiple attribute decision making based on the intelligence computing with hesitant triangular fuzzy information and their application (2) 701–707
Shi, K., see Song, Q. (2) 1001–1009
Shiraz, R.K., see Paryab, K. (1) 37–48
Shojafar, M., see Pooranian, Z. (1) 187–199
Shu, L., see Zhang, H.-d. (4) 2115–2125
Siahi, M., F.N. Rahatabad, O. Khayat, J. Razjouyan and H.C. Neja, Using feed-forward neural network for complex static balance signal characterization with chaotic features (6) 3197–3204
Siahi, M., see Khayat, O., (6) 2959–2967
Singh, A.P., see Rani, S. (3) 1233–1241
Singh, P., A new similarity measure between interval-valued intuitionistic fuzzy sets (1) 555–566
Singh, J., see Bano, T. (4) 1791–1802
Sintunavarat, W., see Phiangsungnoen, S. (5) 2463–2472
So, K.S., see Kim, C.B. (1) 487–494
Sohrabi, M.R., see Adili, E. (3) 1161–1168
Soleimani, F., see Arshadi Khamseh, A. (5) 2327–2340
Song, J., X. Yang, X. Song, H. Yu and J. Yang, Hierarchies on fuzzy information granulations: A knowledge distance based lattice approach (3) 1107–1117
Song, M., J. Peng and Q. Wu, An undesirable-output-considered super-efficiency DEA model and its illustration in evaluation of thermoelectric enterprises (3) 1507–1517
Song, Q. and K. Shi, A fuzzy waiting time contract for patient’s public health care (2) 1001–1009
Song, X., see Song, J. (3) 1107–1117
Souza, J.R., see Pessin, G. (6) 3047–3058
Spiliotis, M., see Tsakiris, G. (5) 2365–2378
Srairi, K., see Mahdab, B. (1) 451–463
Stefanović, M., see Tadić, D. (4) 2091–2101
Su, H., see Luo, L. (4) 1825–1835
Subburaj, P., see Maheswari, R.V. (5) 2649–2664
Subulan, K., A. Baykasoglu and A. Saltbas, An improved decoding procedure and seeker optimization algorithm for reverse logistics network design problem (6) 2703–2714
Sun, H.-X., Fuzzy coalitional core for fuzzy games with coalition structures (2) 977–986
Sun, T., see Peng, J.-j. (3) 1407–1417
Sun, X., Semantic polarity detection of Chinese multiword expression in microblogging based on discriminative latent model (2) 753–759
Sunita, M.S., see Linda, J.P. (1) 435–442
Sunita, M.S., see Manjusha, O.T. (6) 3205–3212
Suresh, M., S. Vengataasalam and K. Arun Prakash, Solving intuitionistic fuzzy linear programming problems by ranking function (6) 3081–3087
Szczeplicki, E., see Cład-Alvarez, A. (2) 655–666
Tárrasceuane, M., On the converse of Fuzzy Lagrange’s Theorem (3) 1487–1490
Tadić, D., M. Stefanović and A. Aleksić, The evaluation and ranking of medical device suppliers by using fuzzy topsis methodology (4) 2091–2101
Taghizadeh, M., see Ganji, E. (4) 1949–1962
Taghizadeh, M., see Ganji, E. (4) 1963–1976
Taheri, M. and M.Z. Jahromi, Study on equality conditions of fuzzy rule-based classification
systems to radial basis functions, SVM and nearest neighbor classifiers (4) 1923–1934
Tao, Z., see Liu, J. (4) 2077–2089
Tavakkoli-Moghaddam, R., see Khalaj, M.R. (6) 2897–2914
Tavana, M., see Momeni, E. (2) 793–804
Teng, H., see He, L. (2) 1067–1075
Tepavčević, A., see Šešelja, B. (3) 1119–1127
Terzi, Ö., A genetic programming approach to river flow modeling (5) 2211–2219
Tirado, P., A new model based on a fuzzy quasi-metric type Baire applied to analysis of complexity (5) 2545–2550
Tiwari, S., see Mishra, K.K. (5) 2305–2317
Toloui, A., see Ganji, E. (4) 1949–1962
Toloui, A., see Ganji, E. (4) 1963–1976
Trindade, R.M.P., see Andrade, A.O. (1) 201–209
Tsakiris, G. and M. Spiliotis, Embankment dam break: Uncertainty of outflow based on fuzzy representation of breach formation parameters (5) 2365–2378
Udovicić, M., see Šešelja, B. (3) 1119–1127
Ueyama, J., see Pessin, G. (6) 3047–3058
Ullah, K., see Abdullah, S. (2) 729–742
Usman, M., see Khan, S.A. (6) 3131–3143
Vargas, P.A., see Pessin, G. (6) 3047–3058
Varol, B.P., A. Aygünolu and H. Aygün, Neighborhood structures of fuzzy soft topological spaces (4) 2127–2135
Vengataasalam, S., see Suresh, M. (6) 3081–3087
Verdegay, J.L., see Ebrahimnejad, A. (1) 173–185
Verdegay, J.L., see Ebrahimnejad, A. (5) 2265–2280
Verma, R. and B.D. Sharma, A new measure of inaccuracy with its application to multi-criteria decision making under intuitionistic fuzzy environment (4) 1811–1824
Verma, T. and A. Kumar, A note on “A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number” (4) 1689–1691
Vigneshwaran, B., see Maheshwari, R.V. (5) 2649–2664
Vijayan, S., see Senthilkumar, S. (2) 891–900
Vosoogh, M., M. Kamyar, A. Akbari and A. Abbasi, A novel modification approach based on MTLBO algorithm for optimal management of renewable micro-grids in power systems (1) 465–473
Vosoogh, M., see Akbari-Zadeh, M.-R. (1) 299–306
Vujočić, V., see Maksimović, M. (2) 877–890
Wagner, F., see Nguyen, T.B. (2) 601–609
Wang, B., B. Pang and G. Ding, Completion of gradual metric spaces (5) 2597–2602
Wang, D., see Liu, D. (5) 2409–2416
Wang, H., see Lin, R. (1) 49–63
Wang, H., see Wei, G. (1) 19–36
Wang, J.-q., see Peng, J.-j. (3) 1407–1417
Wang, L., see Liu, D. (5) 2409–2416
Wang, P.-h., see Su, Z.-g. (5) 2191–2209
Wang, S., see Jiang, Y. (4) 1639–1648
Wei, D., see Zhu, J.-Q. (2) 1057–1065
Wei, G., R. Lin and H. Wang, Distance and similarity measures for hesitant interval-valued fuzzy sets (1) 19–36
Wei, G., see Li, X. (3) 1095–1105
Wei, G., see Lin, R. (1) 49–63
Wei, G.-W., see Jiang, X.-P. (5) 2153–2162
Wolf, D.F., see Pessin, G. (6) 3047–3058
Wu, C., see Zhang, Z. (6) 2737–2748
Wu, J., see Liu, D. (5) 2409–2416
Wu, Q., see Song, M. (3) 1507–1517
Xia, M., see Liao, H. (6) 2969–2985
Xiao, S., Induced interval-valued intuitionistic fuzzy Hamacher ordered weighted geometric operator and their application to multiple attribute decision making (1) 527–534
Xiao, Z. and Y. Zou, A comparative study of soft sets with fuzzy sets and rough sets (1) 425–434
Xie, H.-B., see Zhang, X. (4) 1915–1922
Xin, M., see Fei, J. (2) 817–826
Xin, X. and Y. Fu, Some results of convex fuzzy sublattices (1) 287–298
Xiu, Z.-Y. and F.-G. Shi, M-fuzzifying submodular functions (3) 1243–1255
Xu, J., see Lin, Y. (3) 1533–1543
Xu, Y. and R. Guo, A twin hyper-sphere multi-class classification support vector machine (4) 1783–1790
Xu, Y., see Merigó, J.M. (2) 783–792
<table>
<thead>
<tr>
<th>Author Index Volume 27 (2014)</th>
<th>3239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu, Z., see Chen, L. (3) 1297–1307</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Chen, N. (1) 143–158</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Liao, H. (1) 65–72</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Liao, H. (4) 1703–1717</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Liao, H. (5) 2341–2353</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Liao, H. (6) 2969–2985</td>
<td></td>
</tr>
<tr>
<td>Xu, Z., see Zhang, X. (1) 1021–1033</td>
<td></td>
</tr>
<tr>
<td>Yamak, S., see Bayrak, D. (3) 1143–1152</td>
<td></td>
</tr>
<tr>
<td>Yan, L. and Z.M. Ma, Modeling fuzzy information in fuzzy extended entity-relationship model and fuzzy relational databases (4) 1881–1896</td>
<td></td>
</tr>
<tr>
<td>Yang, J., see Song, J. (3) 1107–1117</td>
<td></td>
</tr>
<tr>
<td>Yang, J.-Y., see Ai, F.-Y. (6) 2715–2723</td>
<td></td>
</tr>
<tr>
<td>Yang, J.-Y., see Ai, F.-Y. (6) 2749–2755</td>
<td></td>
</tr>
<tr>
<td>Yang, R. and R. Ouyang, Classification based on Choquet integral (4) 1693–1702</td>
<td></td>
</tr>
<tr>
<td>Yang, S. and Y. Ju, Dual hesitant fuzzy linguistic aggregation operators and their applications to multi-attribute decision making (4) 1935–1947</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Ju, Y. (2) 987–1000</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Ju, Y. (3) 1203–1218</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Ju, Y. (3) 1219–1232</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Ju, Y. (5) 2481–2495</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Ju, Y. (6) 2857–2868</td>
<td></td>
</tr>
<tr>
<td>Yang, S., see Liu, X. (3) 1187–1201</td>
<td></td>
</tr>
<tr>
<td>Yang, S.-M., see Chen, C.-J. (6) 2835–2845</td>
<td></td>
</tr>
<tr>
<td>Yang, X., see Song, J. (3) 1107–1117</td>
<td></td>
</tr>
<tr>
<td>Yao, X.-f., see Ge, D.-y. (5) 2243–2255</td>
<td></td>
</tr>
<tr>
<td>Yaqoob, N. and M. Aslam, Generalized rough approximations in Γ-semihypergroups (5) 2445–2452</td>
<td></td>
</tr>
<tr>
<td>Yaqoob, N., M. Aslam, B. Davvaz and A. Ghareeb, Structures of bipolar fuzzy Γ-hyperideals in Γ-semihypergroups (6) 3015–3032</td>
<td></td>
</tr>
<tr>
<td>Yari, M.K., see Mirzaee, F. (1) 211–220</td>
<td></td>
</tr>
<tr>
<td>Ye, J., Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making (5) 2453–2462</td>
<td></td>
</tr>
<tr>
<td>Ye, J., Multiple attribute group decision-making method with completely unknown weights based on similarity measures under single valued neutrosophic environment (6) 2927–2935</td>
<td></td>
</tr>
<tr>
<td>Ye, J., Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute decision making (5) 2231–2241</td>
<td></td>
</tr>
<tr>
<td>Yenradee, P., see Chansaad, A.P. (5) 2379–2389</td>
<td></td>
</tr>
<tr>
<td>Yin, H., see Ma, Y. (5) 2473–2480</td>
<td></td>
</tr>
<tr>
<td>Yin, K.-X., see Zhu, J.-Q. (2) 1057–1065</td>
<td></td>
</tr>
<tr>
<td>Yordanova, S., Intelligent approaches for linear controllers tuning with application to temperature control (6) 2809–2820</td>
<td></td>
</tr>
<tr>
<td>Yu, D. and L. Fang, Intuitionistic multiplicative aggregation operators with their application in group decision making (1) 131–142</td>
<td></td>
</tr>
<tr>
<td>Yu, D.-J. and D.-F. Li, Dual hesitant fuzzy multi-criteria decision making and its application to teaching quality assessment (4) 1679–1688</td>
<td></td>
</tr>
<tr>
<td>Yu, H., see Song, J. (3) 1107–1117</td>
<td></td>
</tr>
<tr>
<td>Yu, S.-J., Model for multiple attribute group decision making with uncertain linguistic information (2) 1047–1056</td>
<td></td>
</tr>
<tr>
<td>Yuan, J., see Ning, X. (3) 1077–1085</td>
<td></td>
</tr>
<tr>
<td>Yuanxin, O., see Man, Y. (4) 2055–2065</td>
<td></td>
</tr>
<tr>
<td>Yue, X., see Ning, X. (3) 1077–1085</td>
<td></td>
</tr>
<tr>
<td>Yue, Y. and M. Gu, Fuzzy partial (pseudo-)metric spaces (3) 1153–1159</td>
<td></td>
</tr>
<tr>
<td>Zaheriani, S.Y. and O. Zahiri, Monadic BE-algebras (6) 2987–2995</td>
<td></td>
</tr>
<tr>
<td>Zahiri, O., see Borzooei, R.A. (6) 2997–3005</td>
<td></td>
</tr>
<tr>
<td>Zahiri, O., see Zaheriani, S.Y. (6) 2987–2995</td>
<td></td>
</tr>
<tr>
<td>Zaiwu, G., see Mei, C. (4) 1897–1903</td>
<td></td>
</tr>
<tr>
<td>Zare, A., see Aghazadeh, H. (6) 3059–3066</td>
<td></td>
</tr>
<tr>
<td>Zeng, L., see Yang, Y. (4) 1861–1872</td>
<td></td>
</tr>
<tr>
<td>Zhan, J., see Liu, Q. (3) 1469–1477</td>
<td></td>
</tr>
<tr>
<td>Zhan, J., see Ma, X. (6) 2883–2895</td>
<td></td>
</tr>
<tr>
<td>Zhang, H., A. Sekhari, Y. Ouzrout and A. Bouras, Deriving consistent pairwise comparison matrices in decision making methodologies based on linear programming method (4) 1977–1989</td>
<td></td>
</tr>
<tr>
<td>Zhang, H.-d. and L. Shu, Possibility multi-fuzzy soft set and its application in decision making (4) 2115–2125</td>
<td></td>
</tr>
<tr>
<td>Zhang, H.-y., see Peng, J.-j. (3) 1407–1417</td>
<td></td>
</tr>
<tr>
<td>Zhang, J., J. Zhou and S. Zhong, Models for inverse minimum spanning tree problem with fuzzy edge weights (5) 2691–2702</td>
<td></td>
</tr>
<tr>
<td>Zhang, J., see Luo, L. (4) 1825–1835</td>
<td></td>
</tr>
<tr>
<td>Zhang, M., L.-B. Lib and J.-S. Ding, Method for aggregating induced correlated interval grey linguistic variables and their application to multiple attribute decision making (3) 1169–1177</td>
<td></td>
</tr>
<tr>
<td>Zhang, P.-D., see Ai, F.-Y. (6) 2749–2755</td>
<td></td>
</tr>
</tbody>
</table>
Zhang, Q. and W. Shen, Research on attribute reduction algorithm with weights (2) 1011–1019
Zhang, Q., see Chen, G. (3) 1375–1380
Zhang, Q., see Lin, J. (2) 953–964
Zhang, Q., see Zhang, Y.-X. (3) 1277–1283
Zhang, W., see Ju, Y. (5) 2481–2495
Zhang, X. and H.-B. Xie, Approaches to multiple attribute group decision making problems with interval grey uncertain linguistic variables (4) 1915–1922
Zhang, X., see Zhao, C. (4) 2011–2021
Zhao, C., X. Zhang, Y. Zhang, Q. Dang and X. Zhang, Recognizing driving postures by combined features of contourlet transform and edge orientation histogram, and random subspace classifier ensembles (4) 2011–2021
Zhou, J., see Zhang, J. (5) 2691–2702
Zhoul, Z. and W. Chang, Approaches to multiple attribute decision making based on the Hamacher operation with fuzzy number intuitionistic fuzzy information and their application (3) 1087–1094
Zhong, S., see Zhang, J. (5) 2691–2702
Zhoul, L., see Liu, J. (4) 2077–2089
Zhou, S., see Liu, D. (5) 2473–2480
Zhu, J.-Q., F. Fu, K.-X. Yin, J.-Q. Luo and D. Wei, Approaches to multiple attribute decision making with hesitant interval-valued fuzzy information under correlative environment (2) 1057–1065
Zhu, S., see Ma, Y. (5) 2473–2480
Zhu, X., see Wang, Y. (6) 2785–2796
Zolata, H., see Wang, Y. (6) 2785–2796
Zou, X., see Liu, D. (5) 2409–2416
Zou, Y., see Xiao, Z. (1) 425–434